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An Introduction
ASIC  - Application Specific Integrated Circuit 
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14EC770 : ASIC DESIGN 

• Preamble
• 14EC270 : Digital Logic Circuit Design 

• 14EC520 : Digital CMOS Systems

• Objective
This course provide the students, the knowledge about

– Physical design flow

• Logic synthesis, Floor-planning, Placement and Routing

– Experiments explore complete digital design flow of

programmable ASIC through VLSI EDA tools.

– Students work from design entry using verilog code to GDSII file

generation of an ASIC.
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Concept MAP
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Course Outcomes

CO1 Describe the design flow, types and the programming
technologies of an ASIC and its construction.

Understand

CO2 Describe the goals, objectives, measurements and
algorithms of partitioning then apply those algorithms to
partition the network to meet the objectives.

Apply

CO3 Describe the goals, objectives, measurements and
algorithms of floorplanning & placement then apply those
algorithms to place the logic cells inside the flexible blocks
of an ASIC to meet the objectives.

Apply

CO4 Describe the goals, objectives, measurements and
algorithms of routing then apply those algorithms to route
the channels then describing various circuit extraction
formats and Investigate the issues and discover solutions in
each step of physical design flow of an ASIC.

Analyze

CO5 Design an ASIC for digital circuits with ASIC design flow
steps consists of simulation, synthesis, floorplanning,
placement, routing, circuit extraction and generate GDSII
File for fabrication of an ASIC, then analyze the ASIC to
meet the performance in terms of area, speed and power
using EDA tools.

Analyze

5



Integrated Circuit

 Wafer : A circular piece of pure silicon (10-15 cm in dia, but 

wafers of 30 cm dia are expected soon)

Wafer Lot: 5 ~ 30 wafers, each containing hundreds of 

chips(dies) depending upon size of the die 

 Die: A rectangular piece of silicon that contains one    

IC design

 Mask Layers: Each IC is manufactured with successive 

mask layers(10 – 15 layers)

 First half-dozen or so layers define transistors

 Other half-dozen define Interconnect
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Integrated Circuit (IC) in a package

(a) A pin-grid array (PGA) package.

(b) The silicon die or chip is under the package lid.
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Evolution of IC
• SSI (Small-Scale Integration)-(1962)

– Tens of Transistors

– NAND, NOR

• MSI (Medium-Scale Integration)-(late 1960)

– Hundreds of Transistors

– Counters

• LSI (Large-Scale Integration)-(mid 1970)

– Tens of Thousands of Transistors

– First Microprocessor

• VLSI (Very Large-Scale Integration)-(1980)

– started Hundreds of  Thousands of Transistors-several billion transistors in 2009

– 64 bit Microprocessor with cache memory and floating-point arithmetic units

• ULSI (Ultra Large-Scale Integration)-(late 1980)

– More than about one million circuit elements on a single chip. 

– The Intel 486 and Pentium microprocessors, use ULSI technology
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IC technologies

• Bipolar

– More accuracy

• MOS

– Gate-Aluminium

– Low power consumption

– Low cost

• CMOS

– Gate-Poly-Silicon

– Low power consumption

– Low cost

• BiCMOS
9



• Standard ICs

• Glue Logic-Microelectronic system design then

becomes a matter of defining the functions that

you can implement using standard ICs and then

implementing the remaining logic functions

(sometimes called glue logic ) with one or more

custom ICs.

• ASIC

• ASSP (Application-Specific Standard Products)

Types of IC 
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ASIC and Non ASIC

• Examples of ICs that are not ASICs include standard parts such as: 

– memory chips sold as a commodity item—ROMs, DRAM, and SRAM; 

microprocessors;

– TTL or TTL-equivalent ICs at SSI, MSI, and LSI levels.

• Examples of ICs that are ASICs include: 

– a chip for a toy bear that talks; 

– a chip for a satellite; 

– a chip designed to handle the interface between memory and a 

microprocessor for a workstation CPU; 

– a chip containing a microprocessor as a cell together with other logic.

• ASSP (two ICs that might or might not be considered ASICs )

– controller chip for a PC and a chip for a modem.

– Both of these examples are specific to an application (shades of an ASIC) 

but are sold to many different system vendors (shades of a standard part). 

ASICs such as these are sometimes called application-specific standard 

products ( ASSPs ).
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Measurement of IC
• Gate Equivalent

– Number of gates or transistors

– Gate refer to two input NAND Gate

– In CMOS, each NAND gate consist of 4 transistors

– Example : 10k gate IC 

– (10,000 two-input NAND gates or 40,000 transistors in 

CMOS)

• Feature Size (smallest feature size =   )

– Half of smallest transistor length

– Example: 0.5µm IC

– Feature size,    = 0.25µm  
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Types of ASICs – Cont’d

• Full-Custom ASICs: Possibly all logic cells and all mask layers customized

• Semi-Custom ASICs: all logic cells are pre-designed and some (possibly all)

mask layers customized
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Types of ASICs – Cont’d

Full-Custom ASICs

 Include some (possibly all) customized logic cells

 Have all their mask layers customized

Manufacturing lead time is typically 8 weeks (time taken to make the IC 

does not include design time)

 Full-custom ASIC design makes sense only

 When no suitable existing libraries exist or

 Existing library cells are not fast enough or

 The available pre-designed/pre-tested cells consume too much power      

that a    design can allow or

 The available logic cells are not compact enough to fit or

 ASIC technology is new or/and so special that no cell library exits.
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Types of ASICs – Cont’d

Full-Custom ASICs

 Advantages:

Offer highest performance 

lowest cost (smallest die size) 

Disadvantages

Increased design time

Increased Complexity

 Higher design cost

 Higher risk.

 Some Examples:

Microporcessor,

High-Voltage Automobile Control Chips

Ana-Digi Communication Chips

 Sensors and Actuators
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Types of ASICs – Cont’d

 Semi-Custom ASICs

 Standard-Cell based ASICs (CBIC- “sea-bick”)

 Use predesigned logic cells (Called standard cells) from

standard cell libraries

other mega-cells (Microcontroller or Microprocessors)

full-custom blocks

System-Level Macros(SLMs)

 Functional Standard Blocks (FSBs)

 cores etc

 Get all mask layers customized- transistors and interconnect

 Manufacturing lead time is about 8 weeks

Custom blocks can be embedded
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Standard-Cell based ASICs  

(CBIC- “sea-bick”) – Cont’d
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Types of ASICs – Cont’d

 Standard Cell in Flexible block of CBIC

• Std cell in library is constructed using full-custom design 

methodology-

– Same performance and flexibility but reduce time and risk.

• ASIC designer defines only placement of standard cells

– It can be placed anywhere on silicon.

 Flexible blocks in CBIC

– Standard cells are designed like bricks in a wall.

– Groups of standard cells fit horizontally to form rows.

– The rows stack vertically to form flexible blocks- reshape during design

– Flexible blocks connected with other std cell blocks or full custom block
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Types of ASICs – Cont’d

 Wiring cells in Standard Cell based ASICs 

•Spacer cells

•The width of each row of standard cells is adjusted so that they may be aligned

using spacer cells .

•Row end cells

•The power buses, or rails, are then connected to additional vertical power rails

using row-end cells at the aligned ends of each standard-cell block.

• Power cells

•If the rows of standard cells are long, then vertical power rails can also be run in

metal2 through the cell rows using special power cells that just connect to VDD

and GND.

•Usually the designer manually controls the number and width of the vertical

power rails connected to the standard-cell blocks during physical design.

•Feedthrough cell:

•Piece of metal that is used to pass a signal through a cell or to a space in a cell waiting 

to be used as a feedthrough
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Types of ASICs – Cont’d

 Advantages of CBIC

– Save time, money, reduce risk

– Standard cell optimized individually for speed or area

 Disadvantages of CBIC:

– Time to design standard cell library

– Expenses of designing std cell library

– Time needed to fabricate all layers of the ASIC for new design
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

Gate Array based ASICs

Transistors are predefined on the silicon wafer

Predefined pattern of transistors on a gate array is base array. 

Smallest element repeated to form base array is base cell.

Only the top few layers of metal, which define the  interconnect between 

transistors, are defined by the designer using custom masks.It is often called a 

masked gate array ( MGA ). 

Less turnaroundtime: fewdays or couple of weeks.

Similar to CBIC –but here space is fixed
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Chanelless Gate Array ASIC

•The key difference between a channelless gate array and channeled

gate array

•there are no predefined areas set aside for routing between cells on

a channelless gate array.

•Use an area of transistors for routing in a channelless array, we do

not make any contacts to the devices lying underneath; we simply

leave the transistors unused.

•The logic density—the amount of logic that can be implemented

in a given silicon area is higher for channelless gate array
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Difference between Channeled and Chanelless Gate Array ASIC

•This is usually attributed to the difference in structure

between the two types of array. In fact, the difference occurs

because the contact mask is customized in a channelless

gate array, but is not usually customized in a channeled gate

array. This leads to denser cells in the channelless

architectures.

•Customizing the contact layer in a channelless gate array

allows us to increase the density of gate-array cells because

we can route over the top of unused contact sites. 23



Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Structured Gate Array based ASICs
- Cont’d

•An embedded gate array or structured gate array (also known as masterslice or

masterimage ) combines some of the features of CBICs and MGAs.

•One of the disadvantages of the MGA is the fixed gate-array base cell. This

makes the implementation of memory, for example, difficult and inefficient.

• In an embedded gate array we set aside some of the IC area and dedicate it to

a specific function.

• This embedded area either can contain a different base cell that is more

suitable for building memory cells, or it can contain a complete circuit block,

such as a microcontroller.
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Channelled gate array

Adv: Specific space for interconnection

Disadv: compared to CBIC space is not adjustable

Channelless gate array

Adv :

• Logic density is higher for channelless gate array

• Contact layers are customized 

Disadv:

• No specific area for routing

• Rows of transistors used for routing are not used for other purpose.

Structured Gate Array

Adv:

• Embedded gate array set in some of IC area and dedicate to specific 

function-customized.

• Increase area efficiency, performance of CBIC

• low cost and fast turn around of MGA

Disadv:

Embedded function is fixed
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Programmable ASICs

 PLDs - PLDs are low-density devices 

which contain 1k – 10 k gates and are 

available both in bipolar and CMOS 

technologies [PLA, PAL or GAL]

 CPLDs or FPLDs or FPGAs -
FPGAs combine architecture of gate arrays 

with programmability of PLDs.

User Configurable

 Contain Regular Structures -

circuit elements such as AND, OR, 

NAND/NOR gates, FFs, Mux, RAMs, 

Allow Different Programming   

Technologies

 Allow both Matrix and Row-

based Architectures
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Programmable Logic Devices

• Programmable logic devices ( PLDs ) are standard ICs

– Available in standard configurations

– Sold in very high volume to many different customers.

– PLDs may be configured or programmed to create a part customized to a specific

application

– PLDs use different technologies to allow programming of the device.

• The important features of PLDs:

– No customized mask layers or logic cells

– Fast design turnaround

• Structure of programmable logic device (PLD)

– A single large block of programmable interconnect

– A matrix of logic macrocells that usually consist of programmable array logic

followed by a flip-flop or latch
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Examples of PLD
• The simplest type of programmable IC is a read-only memory ( ROM ). 

• The most common types of ROM use a metal fuse that can be blown 

permanently

(a programmable ROM or PROM ). 

• An electrically programmable ROM (EPROM) , uses programmable MOS 

transistors whose characteristics are altered by applying a high voltage.

• Erasable PROM

– Erase an EPROM either by using another high voltage (an electrically erasable 

PROM , or EEPROM ) 

– Exposing the device to ultraviolet light ( UV-erasable PROM , or UVPROM ).

• There is another type of ROM that can be placed on any ASIC—a 

maskprogrammable ROM (mask-programmed ROM or masked ROM). 

– A masked ROM is a regular array of transistors permanently programmed using 

custom mask patterns.

• An embedded masked ROM is thus a large, specialized, logic cell.
28



Type of PLDs-PLA and PAL
• Place a logic array as a cell on a custom 

ASIC. This type of logic array is called a 

programmable logic array (PLA).

• A PLA has a programmable AND logic 

array, or AND plane , followed by a 

programmable OR logic array, or OR

plane 

• A PAL has a programmable AND plane 

and, in contrast to a PLA, a fixed OR 

plane.

• Depending on how the PLD is 

programmed, we can have an 
– Erasable PLD (EPLD),

– Mask-programmed PLD (called as 

masked PLD but usually just PLD).

• The first bipolar based PALs, PLAs, and 

PLDs used programmable fuses or links.

• CMOS PLDs usually employ floating-gate 

transistors
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Programmable ASICs

 PLDs - PLDs are low-density devices 

which contain 1k – 10 k gates and are 

available both in bipolar and CMOS 

technologies [PLA, PAL or GAL]

 CPLDs or FPLDs or FPGAs -
FPGAs combine architecture of gate arrays 

with programmability of PLDs.

User Configurable

 Contain Regular Structures -

circuit elements such as AND, OR, 

NAND/NOR gates, FFs, Mux, RAMs, 

Allow Different Programming   

Technologies

 Allow both Matrix and Row-

based Architectures
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Types of ASICs – Cont’d

 Semi-Custom ASICs – Cont’d

 Programmable ASICs - Cont’d

 Structure of a CPLD / FPGA
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Essential characteristics of FPGA

• None of the mask layers are customized

• A method of programming the basic logic cells and interconnect

• Core-regular array of Programmable basic logic cells implement 

combinational or sequential logic

• Matrix of programmable interconnects  surround the basic logic cells

• Programmable I/O cells surround the core

• Design turnaround is few hours.

• Difference between PLD and FPGA:

– FPGA are larger and more complex than PLD

32



Why FPGA-based ASIC Design?
Choice is based on Many 

Factors ;

 Speed 

 Gate Density

 Development Time

 Prototyping and Simulation 

Time

 Manufacturing Lead Time

 Future Modifications

 Inventory Risk

 Cost 

Very Effective Adequate Poor

Requirement FPGA/FPLD Discrete Logic Custom Logic

Speed

Gate Density

Cost

Development Time

Prototyping and Sim.

Manufacturing

Future Modification

Inventory

Development Tools
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Different Categorizations of FPGAs
 Based on Functional Unit/Logic 

Cell Structure

 Transistor Pairs

 Basic Logic Gates: NAND/NOR

 MUX

 Look –up Tables (LUT)

Wide-Fan-In AND-OR Gates

 Programming Technology

Anti-Fuse Technology

 SRAM Technology

 EPROM Technology

 Gate Density

 Chip Architecture (Routing Style) 
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Different Types of Logic Cells
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Different Types of Logic Cells – Cont’d

Actel Act Logic Module Structure 

The Actel ACT 2 and ACT 3 Logic Modules. (a) The C-

Module for combinational logic. (b) The ACT 2 S-Module. 

(c) The ACT 3 S-Module. (d) The equivalent circuit 

(without buffering) of the SE (sequential element). (e) The 

sequential element configured as a positive-edge–triggered 

D flip-flop. (Source: Actel.)

 Use Antifuse Programming Tech.

 Based on Channeled GA Architecture

 Logic Cell is MUX which can be configured as multi-input logic gates
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Different Types of Logic Cells – Cont’d

 Xilinx XC4000 CLB Structure 
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Different Types of Logic Cells – Cont’d

Altera Flex / Max Logic 

Element Structure 
Flex 8k/10k Devices – SRAM Based LUTs, Logic 

Elements (LEs) are similar to those used in XC5200 

FPGA 

The Altera MAX architecture. (a) Organization of logic and 

interconnect. (b) A MAX family LAB (Logic Array Block). 

(c) A MAX family macrocell. The macrocell details vary 

between the MAX families—the functions shown here are 

closest to those of the MAX 9000 family 
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Different Types of Logic Cells – Cont’d

Vendor/ Product Architechture Capacity Basic Cell Programming Technology

Actel Gate Array 2-8 k MUX Antifuse

QuickLogic Matrix 1.2-1.8 k MUX Antifuse

Xilinx Matrix 2-10 k RAM Block SRAM

Altera Extended PLA 1- 5 k PLA EPROM

Concurrent Matrix 3-5 k XOR, AND SRAM

Plessy SOG 2-40 k NAND SRAM

To SUMMARIZE, FPGAs from various 

vendors differ in their

 Architecture (Row Based or Matrix 

Based Routing Mechanism)

 Gate Density (Cap. In Equiv. 2- Input 

NAND Gates)

 Basic Cell Structure

 Programming Technology
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Programming Technologies
 Three Programming Technologies

The Antifuse Technology

Static RAM Technology

EPROM and EEPROM Technology
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Antifuse

[a]

[c]

[b]

[d]

[a][a]

[c][c]

[b]

[d]

[b][b]

[d][d]
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Programming Technologies – Cont’d

The Antifuse Technology
Invented at Stanford and developed 

by Actel

Opposite to regular fuse Technology

Normally an open circuit until a 

programming current  (about 5 mA) is 

forced through it

Two Types: 

Actel’s PLICE [Programmable 

Low-Impedance Circuit Element]- A 

High-Resistance Poly-Diffusion 

Antifuse

QuickLogic’s Low-Resistance 

metal-metal antifuse [ViaLink] 

technology

Direct metal-2-metal connections

Higher programming currents 

reduce antifuse resistance

Disadvantages:

Unwanted Long Delay

OTP Technology

[a]

[c]

[b]

[d]

[a][a]

[c][c]

[b]

[d]

[b][b]

[d][d]

Actel Antifuse [b] Actel Antifuse Resistance [c] QuickLogic 

Antifuse [d] QL Antifuse Resistance
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Programming Technologies – Cont’d

 Static RAM Technology

 SRAM cells are used for

As Look-Up Tables (LUT) to 

implement logic (as Truth Tables)

As embedded RAM blocks (for 

buffer storage etc.)

As control to routing and 

configuration switches

Advantages

Allows In-System Programming 

(ISP) 

Suitable for Reconfigurable HW

 Disadvantages

Volatile – needs power all the time / 

use PROM to download configuration 

data
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Programming Technologies – Cont’d

 EPROM and EEPROM Technology-

.

 EPROM Cell is almost as small as Antifuse

 Floating-Gate Avalanche MOS (FAMOS) Tech.

Under normal voltage, transistor is on

With Programming Voltage applied, we can turn it off (configuration) to 

implement our logic

Exposure to UV lamp (one hour) we can erase the programming 

Use EEPROM for quick reconfiguration, also, ISP possible
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Programming Technologies – Cont’d

 Summary Sheet
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ASIC Design Process
S-1 Design Entry: Schematic entry 

or HDL description

S-2: Logic Synthesis: Using 

Verilog HDL or VHDL and 

Synthesis tool, produce a netlist-

logic cells and their interconnect 

detail

S-3 System Partitioning: Divide a 

large system into ASIC sized pieces

S-4 Pre-Layout Simulation: Check 

design functionality

S-5 Floorplanning: Arrange  netlist 

blocks on the chip

S-6 Placement: Fix cell locations in 

a block

S-7 Routing: Make the cell and 

block interconnections

S-8 Extraction: Measure the 

interconnect R/C cost

S-9 Post-Layout Simulation
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ASIC Design Flow

1.Design entry. Enter the design into an ASIC design system, either

using a hardware description language ( HDL ) or

schematic entry .

2. Logic synthesis. Use an HDL (VHDL or Verilog) and a logic synthesis

tool to produce a netlist —a description of the logic

cells and their connections.

3. System partitioning. Divide a large system into ASIC-sized pieces.

4. Prelayout simulation. Check to see if the design functions correctly.

5. Floorplanning. Arrange the blocks of the netlist on the chip.

6. Placement. Decide the locations of cells in a block.

7. Routing. Make the connections between cells and blocks.

8. Extraction. Determine the resistance and capacitance of the

interconnect.

9. Postlayout simulation. Check to see the design still works with the added loads

of the interconnect.

Steps 1–4 are part of logical design , and steps 5–9 are part of physical design .

• There is some overlap. For example, system partitioning might be considered as either logical or 

physical design. To put it another way, when we are performing system partitioning we have to 

consider both logical and physical factors.
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ASIC Design Process – Cont’d

Altera FPGA Design Flow – A Self-Contained  System that does all 

from Design Entry, Simulation, Synthesis, and Programming of Altera Devices
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ASIC Design Process – Cont’d

 Xilinx FPGA Design Flow – Allows Third-Party Design Entry SW, 

Accepts their generated netlist file as an input

 Use Pin2xnf and wir2xnf SW to

convert the netlist file to .XNF

 xnfmap and xnfmerge programs 

convert .xnf files to create a 

unified netlist file (Nand/Nor Gates)

.MAP file are generated

 map2lca program does fitters job,

produces un-routed .LCA file 

 apr or ppr SW does the routing

job, post-layout netlist generated

 makebits SW generates BIT files
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INTRO
• A Town planner works out the

number,types, and sizes of
buildings in a development.

• An architect designs each building,
including the arrangement of the
rooms in each building.

• A builder carries out the
construction according to the
architect’s drawings.

• Electrical wiring is one of the
laststeps in the construction of
each building.

• The physical design of ASICs is
normally divided into

System
partitioning,Floor
Planning, placement
and routing

• Analogy  - ASIC Design

• Town -
Microelectronic  

system 

• Town planner - System 
partitioning

• architect – Floor 
planning

• builder - Placement

• Electrical wiring -
Routing
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VLSI Design Flow
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Physical Design Steps

• Part of an ASIC design flow showing

the system partitioning, floorplanning,

placement, and routing steps.

• Performed in a slightly different order,

iterated or omitted depending on the

type and size of the system and its

ASICs.

• Floorplanning assumes an increasingly

important role.

• Sequential-Each of the steps shown in

the figure must be performed and each

depends on the previous step.

• Parallel- However, the trend is

toward completing these steps in a

parallel fashion and iterating,

rather than in a sequential manner.
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CAD Tools

It is necessary to convert each of the physical design steps
to a problem with well defined goals and objectives

The Goal for each physical design step are the things we
must achieve.

The Objectives for each step are things we would like to
meet on the way to achieving the goals.

Each step of ASIC physical design steps are solved by:

– A set of goals and objectives

– A way to measure the goals and objectives

– Algorithm or method to find a solution that meets the goals and 

objectives.
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CAD Tools
System partitioning:
• Goal. Partition a system into a number of ASICs. 
• Objectives.  Minimize the number of external connections between the ASICs. Keep 

each ASIC smaller than a maximum size. 

Floor planning:
• Goal. Calculate the sizes of all the blocks and assign them locations. 
• Objective.   Keep the highly connected blocks physically close to each other. 

Placement:
• Goal. Assign the interconnect areas and the location of all the logic cells within the      
• flexible blocks. 
• Objectives.  Minimize the ASIC area and the interconnect density. 

Global routing:
• Goal. Determine the location of all the interconnect. 
• Objective.    Minimize the total interconnect area used. 

Detailed routing:
• Goal. Completely route all the interconnect on the chip. 
• Objective.    Minimize the total interconnect length used. 
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Methods and Algorithm

• A CAD tool needs methods or algorithms to generate a solution to each 
problem using a reasonable amount of computer time. 

• There is no best solution for particular problem – heuristic Algorithm

• complexity of an algorithm is O ( f ( n )) 

• there are constants k and n 0 so that the running time of the algorithm T ( n ) is 
less than k f ( n ) for all n > n 0 [ Sedgewick, 1988]. Here n is a measure of the 
size of the problem (number of transistors, number of wires, and so on) 

• The function f (n) is usually one of the following kinds: 
– f(n) = constant. The algm is constant in time. 

(Steps of the algorithm are repeated once or twice). 
– f (n) = log n. The algm is logarithmic in time. It happen    

when a Big problem is transferred into small. 
– f (n) = n ( linear in time). 
– f (n) = n log n (Large prblm divided into small and                     

solved independently) . 
– f (n) = n2 (Quadratic in time).only practical for ASIC problems. 

57



Methods and Algorithm(Contd.,)
• Polynomial: If the time it takes to solve a problem increases with the size of the 

problem at a rate that is polynomial but faster than quadratic (or worse in an 

exponential fashion).

• Each of the ASIC physical design steps, in general, belongs to a class of 

mathematical problems known as NP-complete problems. 

• Definition : This means that it is unlikely we can find an algorithm to solve the 

problem exactly in polynomial time.

• Measurement or objective function: We need to make a quantitative measurement

of the quality of the solution that we are able to find. Often we combine several

parameters or metrics that measure our goals and objectives into a measurement

function or objective function
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Methods and Algorithm (Contd.,)

Cost Function :

If we are minimizing the measurement function, it is a cost function.

Gain function :

If we are maximizing the measurement function, we call the function a 

gain function (sometimes just gain).  
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Estimating ASIC size• Estimate the die size of a 40 k-gate ASIC in a 0.35 µm gate array, three-

level metal process with 166 I/O pads.

• Die size includes core size and I/O size.

• Core size(logic and routing)=(gates/gate density) ×routing factor    

×(1/gate array utilization)

– Gate density=standard cell density ×gate array utilization

• I/O size = a2 where a is the one side of die.

– One side of die= No of I/O pads in a side × I/O pad pitch

1µm(micron)=0.0393701mil 

(1mil= Thousands of inch)
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Estimating ASIC size

• For this ASIC the minimum feature size is 0.35 µm.

• No of I/O pads=166.

• One side=166/4=42 I/O pads per side.

• If a I/O pad pitch=5 mil then One side of die=5×42=210mil

• Minimum requirement of die size=210×210=4.4×104mil2 to fit 166 I/O 
pads

• Die area utilized by core logic=1.19×104/4.4×104mil2=27% by core logic
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Estimating ASIC size
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System Hierarchy



Levels of Partitioning
•System Level Partitioning

•Board Level Partitioning

•Chip Level Partitioning

•System

•PCBs

•Chips

•Subcircuits

•/ Blocks



Partitioning of a Circuit



VLSI Physical Design :- Partitioning

• System partitioning requires 
– Goals and Objectives

– Methods and algorithms to find solutions

– Ways to evaluate these solutions.

• Goal of partitioning
– Divide the system into number of small systems.

• Objectives of Partitioning

we may need to take into account any or all of the following objectives:
– A maximum size for each ASIC

– A maximum number of ASICs

– A maximum number of connections for each ASIC

– A maximum number of total connections between all ASICs



Measuring Connectivity



Measuring Connectivity

• Figure (a) shows a circuit schematic, netlist, or network. 

• The network consists of circuit modules A–F. Equivalent terms for a circuit

module - cell, logic cell, macro, or a block. 

• A cell or logic cell -a small logic gate (NAND etc.),collection of other cells; 

• Macro - gate-array cells; 

• Block - a collection of gates or cells.

• Each logic cell has Electrical connections between the terminals- connectors or 

pins.

• The network can be represented as the mathematical graph shown in Figure (b).

• A graph is like a spider’s web:

– it contains vertexes (or vertices) A–F -graph nodes or points) that are connected by 

edges. 

– A graph vertex corresponds to a logic cell. 

– An electrical connection (a net or a signal) between two logic cells corresponds to a 

graph edge.
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Measuring Connectivity

• Net Cutset

– Divide the network into two by drawing a line across connections, make net cuts. The resulting

set of net cuts is the net cutset.

– Number of net cuts - the number of external connections between the two partitions in a

network.

• Edge cutset.

– When we divide the network graph into the same partitions we make edge cuts and we create

the edge cutset.

– Number of edge cuts – the number of external connections between the two partitions in a

graph

– Number of edge cuts in a graph is not necessarily equal to the number of net cuts in the

network.



Partitioning

•Initial 

Bisections

•Cutsize = 9

•Final Bisections

•Cutsize = 1

•1

•2

•3

•4

•5

•6

•7

•8

•1

•5

•8

•4

•2 6           3 7



A Simple Partitioning Example

•Goal : to partition our simple network into ASICs. 

•Objectives are the following:

• -Use no more than three ASICs.

• -l Each ASIC is to contain no more than four logic 

cells.

• -l Use the minimum number of external connections for 

each ASIC.

•FIGURE 15.7 Partitioning example. 

• (a) We wish to partition this network into three ASICs with no more than four logic cells per ASIC.

• (b) A partitioning with five external connections (nets 2, 4, 5, 6, and 8)—the minimum number. 
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 Splitting a network into several pieces - network partitioning problem.

 Two types of algorithms used in system partitioning are

– Constructive partitioning - uses a set of rules to find a

solution.

– Iterative partitioning improvement (or iterative

partitioning refinement - takes an existing solution and

tries to improve it.

•Types  of  Partitioning
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Constructive Partitioning

• The most common constructive partitioning algorithms - seed growth or cluster
growth.

• The steps of a simple seed-growth algorithm for constructive partitioning:

1. Start a new partition with a seed logic cell.

2. Consider all the logic cells that are not yet in a partition. Select each of
these logic cells in turn.

3. Calculate a gain function, g(m) , that measures the benefit of adding
logic cell m to the current partition. One measure of gain is the number
of connections between logic cell m and the current partition.

4. Add the logic cell with the highest gain g(m) to the current partition.

5. Repeat the process from step 2. If you reach the limit of logic cells in a
partition, start again at step 1.
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Cluster Growth
m : size of each cluster, V : set of nodes

n  =  |V| / m ;

for  (i=1; i<=n; i++)

{

seed = vertex in V with maximum degree;

Vi = {seed};

V = V – {seed};

for  (j=1; j<m; j++)

{

t = vertex in V maximally connected to Vi;

Vi = Vi U {t};

V = V – {t};

}

}
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Constructive Partitioning 

•A constructed partition using logic cell C as a seed. It is

difficult to get from this local minimum, with seven

external connections (2, 3, 5, 7, 9,11,12), to the optimum

solution of b.
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Improvement in Partitioning

Fig 1 with 5 external connections                   Fig 2 with 7 external connections

 To get from the solution shown in Fig 2 to the solution of Fig 1, which has a 

minimum number of external connections, requires a complicated swap. 

 The three pairs: D and F, J and K, C and L need to be swapped—all at the same 

time.  It would take a very long time to consider all possible swaps of this complexity.
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Iterative Partitioning Improvement

Algorithm based on Interchange method and group migration method

Interchange method (swapping a single logic cell):

If the swap improves the partition, accept the trail interchange otherwise select a new set
of logic cells to swap.

Example: Greedy Algorithm –

It considers only one change

-Rejects it immediately if it is not an improvement.

-Accept the move only if it provides immediate benefit.

It is known as local minimum.

Group Migration (swapping a group of logic cell):

• Group migration consists of swapping groups of logic cells between partitions. 

• The group migration algorithms –
– better than simple interchange methods at improving a solution

– but are more complex.

Example: Kernighan – Lin Algorithm (K-L)

- Min cut Problem : Dividing a graph into two pieces, minimizing the

nets that are cut
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The Kernighan–Lin Algorithm
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The Kernighan–Lin Algorithm (contd.,)

• Total external cost, cut cost, cut weight

• External edge cost

• Internal edge cost

• Gain

where





BbAa

abcW
,





By

aya cE





Az

aza cI

abba CDDg 2

aaa IED 
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The Kernighan–Lin Algorithm (contd.,)

• The K–L algorithm finds a group of node pairs to swap that increases the gain even

though swapping individual node pairs from that group might decrease the gain.

The steps of K-L algorithm are:

1. Find two nodes, ai from A, and bi from B, so that the gain from swapping them is a

maximum. The gain gi is

2. Next pretend swap ai and bi even if the gain gi is zero or negative, and do not consider ai

and bi eligible for being swapped again.

3. Repeat steps 1 and 2 a total of m times until all the nodes of A and B have been pretend

swapped. We are back where we started, but we have ordered pairs of nodes in A and B

according to the gain from interchanging those pairs.

iiii babai CDDg 2
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4. Now we can choose which nodes we shall actually swap. Suppose we only swap the

first n pairs of nodes that we found in the preceding process. In other words we

swap nodes X = a1, a2, &…., an from A with nodes Y = b1, b2,&…..,bn from B.

The total gain would be,

5. We now choose n corresponding to the maximum value of Gn

• If the maximum value of Gn > 0, then swap the sets of nodes X and Y and

thus reduce the cut weight by Gn .

• Use this new partitioning to start the process again at the first step.

• If the maximum value of Gn = 0, then we cannot improve the current

partitioning and we stop.

• We have found a locally optimum solution.





n

i

in gG
1

The Kernighan–Lin Algorithm (contd.,)
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•Partitioning a graph using the 

Kernighan–Lin algorithm. 

•(a) Shows how swapping node 1 

of  partition A with node 6 of  

partition B results in a gain of  g 

= 2.

•(b) A graph of  the gain 

resulting from swapping pairs of  

nodes. 

•(c) The total gain is equal to the 

sum of  the gains obtained at 

each step. 
85



Kernighan and Lin heuristic

“An Efficient Heuristic Procedure for Partitioning 

Graphs” B. W. Kernighan and S. Lin, The Bell 

System Technical Journal, 49(2):291-307, 1970
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Kernighan-Lin Algorithm (1)
•Given:

Initial weighted graph G with

V(G) = { a, b, c, d, e, f } 

•a

•c

•b

•d

•e •f

•3

•1

•2

•4

•3 •4

•6

•2

•1

•2

•Start with any partition of 

V(G) into X and Y, say 

•X = { a, c, e }  

Y = { b, d, f }
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KL algorithm (2a)

•cut-size = 3+1+2+4+6 = 16
• Ga = Ea – Ia = – 3  (= 3 – 4 – 2) 

• Gc = Ec – Ic =    0  (= 1 + 2 + 4 – 4 – 3) 

• Ge = Ee – Ie = + 1  (= 6 – 2 – 3) 

• Gb = Eb – Ib = + 2  (= 3 + 1 –2) 

• Gd = Ed – Id = – 1  (= 2 – 2 – 1) 

• Gf = Ef – If = + 9  (= 4 + 6 – 1) 

•Compute the gain values of moving 

node x to the others set:

•Gx = Ex - Ix

Ex = cost of edges connecting node x 

with the other group (extra)

Ix = cost of edges connecting node x 

within its own group (intra)

•a

•c

•b

•d

•e •f

•3

•1

•2

•4

•3 •4

•6

•2

•1

•2

•X = { a, c, e }  

Y = { b, d, f }
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KL algorithm (2b)

• Ga = Ea – Ia = – 3  (= 3 – 4 – 2) 

• Gb = Eb – Ib = + 2  (= 3 + 1 – 2) 

• gab = Ga + Gb – 2cab = – 7 (=  – 3 + 2 – 2.3) 

•Cost saving when exchanging a and b is 

essentially Ga + Gb

•However, the cost saving 3 of the direct 

edge was counted twice. But this edge 

still connects the two groups

•Hence, the real “gain” (i.e. cost saving) 

of this exchange is  gab = Ga + Gb - 2cab

•a

•c

•b

•d

•e •f

•3

•1

•2

•4

•3 •4

•6

•2

•1

•2

•X = { a, c, e }  

Y = { b, d, f }
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KL algorithm (3)
• Ga = –3   Gb = +2 

• Gc =   0  Gd = –1

• Ge = +1   Gf = +9

• gab = Ga + Gb – 2wab = –3 + 2 – 23 = –7 

• gad = Ga + Gd – 2wad = –3 – 1 – 20 = –4 

• gaf = Ga + Gf – 2waf  = –3 + 9 – 20 = +6 

• gcb = Gc + Gb – 2wcb = 0 + 2 – 21   =   0 

• gcd = Gc + Gd – 2wcd = 0 – 1 – 22   = –5 

• gcf = Gc + Gf – 2wcf   = 0 + 9 – 24   = +1 

• geb = Ge + Gb – 2web = +1 + 2 – 20 = +3 

• ged = Ge + Gd – 2wed = +1 – 1 – 20 =   0 

• gef = Ge + Gf – 2wef   = +1 + 9 – 26 = –2 

•Compute all the gains

•a

•c

•b

•d

•e •f

•3

•1

•2

•4

•3 •4

•6

•2

•1

•2

•cut-size = 16

•Pair with 

maximum gain
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KL algorithm (4)

•a

•c

•b

•d

•e

•f

•3

•1

•2

•4

•3 •4
•6

•2•1

•2

•cut-size = 16 – 6 = 10

•a

•c

•b

•d

•e •f

•3

•1

•2

•4

•3 •4

•6

•2

•1

•2

•cut-size = 16

•Exchange nodes 

a and f

•gaf = Ga + Gf – 2caf  = –3 + 9 – 20 = +6 

•Then lock up 

nodes a and f
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KL algorithm (5)

•a

•c

•b

•d

•e

•f

•3

•1

•2

•4

•3 •4
•6

•2•1

•2

•cut-size = 10
•Update the G-values of unlocked nodes

• Ga = –3   Gb = +2 

• Gc =   0  Gd = –1

• Ge = +1   Gf = +9

• G’c = Gc + 2cca – 2ccf = 0 + 2(4 – 4) = 0 

• G’e = Ge + 2cea – 2cef = 1 + 2(2 – 6) = –7 

• G’b = Gb + 2cbf – 2cba= 2 + 2(0 – 3) = –4

• G’d = Gd + 2cdf – 2cda = –1 + 2(1 – 0) = 1

•X’ = { c, e }  

Y’ = { b, d }
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KL algorithm (6)

•a

•c

•b

•d

•e

•f

•3

•1

•2

•4

•3 •4
•6

•2•1

•2

•cut-size = 10

• G’c =   0  G’b = –4

• G’e = –7 G’d = +1
•X’ = { c, e }  

Y’ = { b, d }

•Compute the gains

• g’cb = G’c + G’b – 2ccb = 0 – 4 – 21   = –6 

• g’cd = G’c + G’d – 2ccd = 0 + 1 – 22   = –3 

• g’eb = G’e + G’b – 2ceb = –7 – 4 – 20 = –

11 

• g’ed = G’e + G’d – 2ced = –7 + 1 – 20 = –6 
•Pair with maximum gain 

(can also be neative)
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KL algorithm (7)

•a

•c

•b

•d

•e

•f

•3

•1

•2

•4

•3 •4
•6

•2•1

•2

•cut-size = 10

•Exchange nodes 

c and d

•Then lock up 

nodes c and d

•a

•d

•b

•c

•e

•f

•3
•1

•2

•4

•3 •4
•6

•2
•1

•2

•cut-size = 10 – (–3) = 13

•g’cd = G’c + G’d – 2ccd  = 0 + 1 – 22   = –3 
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KL algorithm (8)

•cut-size = 13

•a

•d

•b

•c

•e

•f

•3
•1

•2

•4

•3 •4
•6

•2
•1

•2

•g”eb = G”e + G”b – 2ceb  = –1 – 2 – 20   = –3 

• G’c =   0  G’b = –4

• G’e = –7 G’d = +1

•X” = { e }  

Y” = { b }

•Update the G-values of unlocked nodes

• G”e = G’e + 2ced – 2cec = –7 + 2(0 – 3) = –

1 

• G”b = G’b + 2cbd – 2cbc= –4 + 2(2 – 1) = –

2•Compute the gains
•Pair with max. gain 

is (e, b)
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KL algorithm (9)
• Summary of the Gains…

– g = +6

– g + g’ = +6 – 3 = +3

– g + g’ + g” = +6 – 3 – 3 = 0

• Maximum Gain = g = +6

• Exchange only nodes a and f.  

• End of 1 pass.

Repeat the Kernighan-Lin.
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Demerits of Kernighan–Lin Algorithm 

• Minimizes the number of edges cut, not the number of nets cut.

• Does not directly allow for more than two partitions.

• Does not allow logic cells to be different sizes. 

• Does not allow partitions to be unequal or find the optimum partition size.

• Does not allow for selected logic cells to be fixed in place.

• K-L Finding local optimum solution in random fashion

– Random starting partition

– Choice of nodes to swap may have equal gain

• Expensive in computation time.
– An amount of computation time that grows as                  for 2n nodes.

Solution:

To implement a net-cut partitioning rather than an edge-cut partitioning,
keep track of the nets rather than the edges – FM algorithm

nn log2
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Recap of Kernighan-Lin’s Algorithm

a Pair-wise exchange of nodes to reduce cut size

a Allow cut size to increase temporarily within a pass 

•Compute the gain of a swap

•Repeat

•Perform a feasible swap of max gain

•Mark swapped nodes “locked”;

•Update swap gains;

• Until no feasible swap; 

• Find max prefix partial sum in gain sequence g1, g2, …, gm

• Make corresponding swaps permanent.

a Start another pass if current pass reduces the cut size

• (usually converge after a few passes)

u  v 

v  u 

locked
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Fiduccia-Mattheyses Algorithm

•“A Linear-time Heuristics 

•for Improving Network Partitions”

•19th DAC, pages 175-181, 1982.



Fiduccia-Mattheyses (F-M) Algorithm

• Addresses the difference between nets and edges.

• Reduce the computational time.

Key Features of F-M:
• Base logic cell - Only one logic cell moves at a time. 

– Base logic cell is chosen to maintain balance between partitions in order to stop the
algorithm from moving all the logic cells to one large partition

– Balance - the ratio of total logic cell size in one partition to the total logic cell size in the
other. Altering the balance allows us to vary the sizes of the partitions.

• Critical nets - used to simplify the gain calculations. 

– A net is a critical net if it has an attached logic cell that, when swapped, changes the
number of nets cut.

– It is only necessary to recalculate the gains of logic cells on critical nets that are attached
to the base logic cell.

• The logic cells that are free to move are stored in a doubly linked list. The lists are
sorted according to gain. This allows the logic cells with maximum gain to be found
quickly.

• Reduce the computation time - increases only slightly more than linearly with the
number of logic cells in the network.
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Overcome problems in K-L using F-M algorithm

• To generate unequal partitioning

– Dummy logic cells with no connections introduced in K-L algorithm

– Adjust partition size according to balance parameter in F-M 

algorithm

• To fix logic cells in place during partitioning

– That logic cells should not be considered as base logic cells in F-M 

algorithm.



Features of FM Algorithm

• Modification of KL Algorithm:

– Can handle non-uniform vertex weights (areas)

– Allow unbalanced partitions

– Extended to handle hypergraphs

– Clever way to select vertices to move, run 

much faster.



•FIGURE - A hypergraph. (a) The network contains a net y with three terminals. (b) In the 

network hypergraph we can model net y by a single hyperedge (B, C, D) and a star node. Now 

there is a direct correspondence between wires or nets in the network and hyperedges in the graph

•Hypergraph- To represent nets with multiple terminals in a network accurately

•A hypergraph consist of –

 a star- a special type of vertex 

 a hyperedge- represents a net with more than two terminals in a network. 

Hypergraph
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Problem Formulation
• Input: A hypergraph with 

– Set vertices V. (|V| = n)

– Set of hyperedges E. (total # pins in netlist = p) 

– Area au for each vertex u in V.

– Cost ce for each hyperedge in e.

– An area ratio r.

• Output: 2 partitions X & Y such that

– Total cost of hyperedges cut is minimized.

– area(X) / (area(X) + area(Y)) is about r.

• This problem is NP-Complete!!!



Ideas of FM Algorithm

• Similar to KL:

– Work in passes.

– Lock vertices after moved.

– Actually, only move those vertices up to the maximum partial sum 

of gain.

• Difference from KL:

– Not exchanging pairs of vertices. 

Move only one vertex at each time.

– The use of gain bucket data structure.



Gain Bucket Data Structure

•Cell
•#

•Cell
•#

•Max

•Gain

•+pmax

•-pmax

•1 •2 •n



FM  Partitioning:

- each object is assigned a 

gain

- objects are put into a sorted

gain list

- the object with the highest gain

from the larger of the two sides

is selected and moved.

- the moved object is "locked"

- gains of "touched" objects are

recomputed

- gain lists are resorted

Object Gain: The amount of change in cut crossings

that will occur if an object is moved from

its current partition into the other partition

Moves are made based on object gain.



FM  Partitioning:
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Ratio-Cut Algorithm

• Removes the restriction of constant partition sizes.

• The cut weight W for a cut that divides a network into two partitions, A 
and B , is given by ,

• The ratio of a cut is defined as

R = W / ( |A| |B| )

The |A| and |B| are size of a partition is equal to the number of nodes it  

contains (also known as the set cardinality). The cut that  minimizes R is 
called the ratio cut. 





BbAa

abcW
,
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Ratio-Cut Algorithm (contd.,)

 A network is partitioned into small, highly connected groups

using ratio cuts.

 A reduced network is formed from these groups.

—Each small group of logic cells forms a node in the reduced network.

 Finally, apply the F–M algorithm to improve the reduced

network

Advantage of  Ratio-cut than K-L

The K–L algorithm minimizes W while keeping partitions 

A and B the same size. 
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Look-ahead Algorithm

Why Look-ahead?
• K–L and F–M algorithms consider only the immediate gain to be made 

by moving a node. 

• When there is a tie between nodes with equal gain (as often happens), there is no 
mechanism to make the best choice. 

Algorithm

• The gain for the initial move is called as the first-level gain. 

• Gains from subsequent moves are then second-level and higher gains. 

• Define a gain vector that contains these gains. 

• The choice of nodes to be swapped are found Using the gain vector .

• This reduces both the mean and variation in the number of cuts in the 

resulting partitions.

125



Look-ahead Algorithm

• Gain vector: Move 2 to B=+1, Move 3 to B=+1

• Gain vector: Move 5 to B=+1, Move 4 to B=+2

126



127



Look-ahead Algorithm (contd.,)

•An example of  network partitioning that shows the need to look ahead when 

selecting logic cells to be moved between partitions. 

•Partitionings (a), (b), and (c) show one sequence of  moves – Partition I

•Partitionings (d), (e), and (f) show a second sequence – Partition II

•Partition I:

•The partitioning in (a) can be improved by moving node 2 from A to B with a 

gain of  1. The result of  this move is shown in (b). This partitioning can be 

improved by moving node 3 to B, again with a gain of  1. 

•Partition II:

•The partitioning shown in (d) is the same as (a). We can move node 5 to B 

with a gain of  1 as shown in (e), but now we can move node 4 to B with a gain 

of  2. 
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Partitioning: 

Simulated Annealing
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State Space Search Problem

• Combinatorial optimization problems (like partitioning) can be thought 

as a State Space Search Problem.

• A State is just a configuration of the combinatorial objects involved.

• The State Space is the set of all possible states (configurations).

• A Neighbourhood Structure is also defined (which states can one go in 

one step).

• There is a cost corresponding to each state.

• Search for the min (or max) cost state.
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Greedy Algorithm

• A very simple technique for State Space Search 

Problem.

• Start from any state.

• Always move to a neighbor with the min cost 

(assume minimization problem).

• Stop when all neighbors have a higher cost than 

the current state.
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Simulated Annealing

• Very general search technique.

• Try to avoid being trapped in local minimum by 

making probabilistic moves.

• Popularize as a heuristic for optimization by:

– Kirkpatrick, Gelatt and Vecchi, “Optimization by 

Simulated Annealing”, Science, 220(4598):498-516, 

May 1983.



•Jigsaw puzzles – Intuitive usage of Simulated 

Annealing

• Given a jigsaw puzzle such 
that one has to obtain the 
final shape using all pieces 
together.

• Starting with a random 
configuration, the human 
brain unconditionally 
chooses certain moves that 
tend to the solution.

• However, certain moves that 
may or may not lead to the 
solution are accepted or 
rejected with a certain small 
probability.

• The final shape is obtained 
as a result of a large number 
of iterations.
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Basic Idea of Simulated 

Annealing
• Inspired by the Annealing Process:

– The process of carefully cooling molten metals in order 

to obtain a good crystal structure.

– First, metal is heated to a very high temperature.

– Then slowly cooled.

– By cooling at a proper rate, atoms will have an 

increased chance to regain proper crystal structure.

• Attaining a min cost state in simulated annealing 

is analogous to attaining a good crystal structure in 

annealing.
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The Simulated Annealing Procedure

Let t be the initial temperature.

Repeat

Repeat

– Pick a neighbor of the current state randomly.

– Let c = cost of current state.

Let c’ = cost of the neighbour picked.

– If c’ < c, then move to the neighbour (downhill move).

– If c’ > c, then move to the neighbour with probablility e-

(c’-c)/t (uphill move).

Until equilibrium is reached.

Reduce t according to cooling schedule.

Until Freezing point is reached.



•Convergence of simulated annealing 

HILL CLIMBING
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= e-(^C/temp)

Unconditional Acceptance
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•Ball on terrain example – SA vs Greedy Algorithms

Greedy Algorithm

gets stuck here!

Locally Optimum

Solution.

Simulated Annealing explores

more. Chooses this move with a

small probability (Hill Climbing)

Upon a large no. of iterations,

SA converges to this solution.

Initial position

of the ball
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Simulated Annealing
• Takes an existing solution and then makes successive changes in a series

of random moves.

• Each move is accepted or rejected based on an energy function.

• In the Interchange method,

• Accept the new trial configuration only if the energy function decreases, 

which means the new configuration is an improvement

• But in the simulated Annealing,

• Accept the new configuration even if the energy function increases for 

the new configuration—which means things are getting worse. 

• The probability of accepting a worse configuration is controlled by the 

exponential expression exp(–∆E / T ),

where, ∆ E - the resulting increase in the energy function. 

T - a variable that can be controlled and corresponds to the 

temperature in the annealing of a metal cooling (this is why the process is called 

simulated annealing). 
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Simulated Annealing

• A parameter that relates the temperatures, T i and T i +1, at the i th and i + 1 th

iteration:

T i +1 =α T i .

• As the temperature is slowly decreased, the probability of making moves that

increase the energy function gets decreased.

• Cooling schedule – The critical parameter of the simulated-annealing algorithm is

the rate at which the temperature T is reduced.

• Finally, as the temperature approaches zero, refuse to make any moves that

increase the energy of the system and the system falls and comes to rest at the

nearest local minimum.

• The minimums of the energy function correspond to possible solutions.

• The best solution is the global minimum.
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Simulated Annealing
• Requirement of Simulated Annealing:

• To find a good solution, a local minimum close to the global minimum, requires a

high initial temperature and a slow cooling schedule.

• Disadvantage:

• This results in many trial moves and very long computer run time.(it gives

optimum)

• Advantage:

• To solve large graph problems

• Hill climbing- Accept moves that seemingly take us away from a desirable

solution to allow the system to escape from a local minimum and find other,

better, solutions.
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Other Partitioning Objectives

Constraints or 

Objectivies

Purpose Implemented

Timing Constraints certain logic cells in a system 

may need to be located on

the same ASIC in order to avoid 

adding the delay of any external  

interconnections 

Adding weights to nets to make 

them more important than others.

Power Constraints Some logic cells may consume 

more power than others 

To assign more than rough estimates 

of power consumption for each logic 

cell at the system planning stage, 

before any simulation has been 

completed. 

Technology Constraints To include memory on an ASIC It will keep logic cell together 

requiring similar technology

Cost Constraints To use low cost package To keep ASICs below a certain size.

Test Constraints Maintain Observability and 

Controllability

It require that we force certain 

connection to external
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FPGA Partitioning

- An asynchronous transfer mode (ATM) 

connection simulator

• ATM is a signaling protocol for many different types of traffic including 

constant bit rates (voice signals) as well as variable bit rates (compressed 

video). 

• The ATM Connection Simulator is a card that is connected to a 

computer. 

• Under computer control the card monitors and corrupts the ATM signals 

to simulate the effects of real networks. 

• An example would be to test different video compression algorithms. 

Compressed video is very bursty (brief periods of very high activity), 

has very strict delay constraints, and is susceptible to errors.
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•FIGURE 15.4 The asynchronous transfer mode (ATM) cell format. The ATM protocol uses 

53-byte cells or packets of information with a data payload and header information for 

routing and error control. 

•Asynchronous transfer mode (ATM) cell format
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•An asynchronous transfer mode (ATM) connection 

simulator
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FPGA Partitioning
• The simulator is partitioned into the three major blocks

• ATM traffic policer - which regulates the input to the simulator

• ATM cell delays generator – which delays ATM cell, reorders

ATM cells and inserts ATM cells with valid ATM cell headers.

• ATM cell error generator – which produce bit errors and four

random variables that are needed by the other two blocks.

• The Traffic Policer performs the following operations:

• Performs header screening and remapping.

• Checks ATM cell Conformance.

• Delete selected ATM Cells.

• The delay generator delays, misinserts and reorders the target ATM cells.

• The error generator performs the following operations:

• Payload bit error ratio generation: The user specifies the Bernoulli

probability PBER of the payload bit error ratio.

• Random variable generation for ATM cell loss, misinsertion,

reordering and deletion.
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Find the connectivity matrix for the ATM Connection

Simulator shown in Figure. Use the following scheme to

number the blocks and ordering of the matrix rows and

columns: 1 = Personal Computer, 2 = Intel 80186, 3 =

UTOPIA receiver, 4 = UTOPIA transmitter, 5 = Header

remapper and screener, 6 = Remapper SRAM, . . . 15 =

Random-number and bit error rate generator, 16 =

Random-variable generator. All buses are labeled with

their width except for two single connections (the arrows).
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Automatic Partitioning with FPGAs

• Altera hardware design language (AHDL)

- To direct the partitioner to automatically partition logic into chips within 

the same family, using AUTO keyword,

DEVICE top_level  IS AUTO ; % the partitioner assign logic

- CLIQUE keyword to keep logic together

CLIQUE fast_logic

BEGIN

| shift_register : MACRO;% keep this in one device

END;
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Power Dissipation

• Dynamic Power Dissipation

– Switching current from charging and discharging parasitic 

capacitance.

– Short-circuit current when both n -channel and p -channel 

transistors are momentarily on at the same time.

• Static Power Dissipation

– Subthresold current 

– Leakage current
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Switching current
• From charging and discharging of parasitic capacitance

• When the p -channel transistor in an inverter is charging a capacitance, C , 
at a frequency, f ,

– the current through the transistor is I=C (d V /d t ). 

– The power dissipation is P=VI=CV (d V /d t ) for one-half the period of the input, t = 
1/(2 f ).

– The power dissipated in the p -channel transistor is thus

• When the n -channel transistor discharges the capacitor, the power 
dissipation is equal.( ie.,              )

• Then total power dissipation,

• Most of the power dissipation in a CMOS ASIC arises from this source—the 
switching current. 

• The best way to reduce power is to reduce V DD and to reduce C , the amount 
of capacitance we have to switch.  
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Short circuit current
• Both n-channel and p-channel transistors momentarily on at the same 

time

• The short-circuit current or crowbar current can be particularly important 
for output drivers and large clock buffers. 

• For a CMOS inverter, the power dissipation due to the crowbar current is

, Transistor gain factor

– Where                         is the same for both p - and n -channel transistors.

– The threshold voltages Vtn are assumed equal for both transistor types.

– trf is the rise and fall time (assumed equal) of the input signal [ Veendrick, 
1984].
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Problem on Power Dissipation

• consider an output buffer that is capable of sinking 12mA at an output voltage

of 0.5 V., Derive the transistor gain factor (Assume VGS=VDD=3.3V; Vth =0.65V)

• If the output buffer is switching at 100 MHz and the input rise time to the 

buffer is 2ns, Calculate the power dissipation due to short-circuit current.

• If the output load is 10 pF, Calculate  the dissipation due to switching current.

• What do you infer from this?

• Inference:

(β=0.01AV-1, short-circuit current, P2=0.00133W or 1mW, switching 

current, P1=0.01089W or 10mW)

– short-circuit current is typically less than 10 percent of the switching current.
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Subthreshold current
• CMOS transistor is never completely off
• When the gate-to-source voltage, VGS , of an MOS transistor is less than the

threshold voltage, Vt , the transistor conducts a very small subthreshold current in the
subthreshold region

– where I 0 is a constant, and the constant, n, is normally between 1 and 2.

• The slope, S, of the transistor current in the subthreshold region is

• Find the slope of transistor current S at a junction temperature, T = 125 °C (400 K)
and assuming n = 1.5 ( assume q = 1.6 * 10 –19 Fm –1 , k = 1.38 * 10 –23 JK –1). What do
you infer from the result of slope of transistor current.

Inference:

S = 120 mV/decade which does not scale.

The constant value of S = 120 mV/decade means it takes 120 mV to reduce the
subthreshold current by a factor of 10 in any process.
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Leakage Current 

• Transistor leakage is caused by the fact that a reverse-biased diode conducts

a very small leakage current.

• The sources and drains of every transistor, as well as the junctions

between the wells and substrate, form parasitic diodes.

• The parasitic-diode leakage currents are strongly dependent on the

– type and quality of the process

– temperature.

• The parasitic diodes have two components in parallel: an area diode and a

perimeter diode.

• The leakage current due to perimeter diode is larger than area diode.

• The ideal parasitic diode currents are given by the following equation:
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ASIC Design Process

•S-1 Design Entry: Schematic 

entry or HDL description

•S-2: Logic Synthesis: Using 

Verilog HDL or VHDL and 

Synthesis tool, produce a netlist-

logic cells and their interconnect 

detail

•S-3 System Partitioning: Divide a 

large system into ASIC sized pieces

•S-4 Pre-Layout Simulation: 

Check design functionality

•S-5 Floorplanning: Arrange  

netlist blocks on the chip

•S-6 Placement: Fix cell locations 

in a block

•S-7 Routing: Make the cell and 

block interconnections

•S-8 Extraction: Measure the 

interconnect R/C cost

•S-9 Post-Layout Simulation

156



Introduction

• The input to the floorplanning step - output of system partitioning and
design entry—a netlist.

• Netlist - describing circuit blocks, the logic cells within the blocks, and
their connections.
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•The starting point of floorplaning and placement steps for
the viterbi decoder

•-collection of standard cells with no room set aside yet for
routing. 158



The starting point of floorplaning and 
placement steps for the viterbi    decoder

• Small boxes that look like bricks - outlines of the standard cells.

• Largest standard cells, at the bottom of the display (labeled

dfctnb) - 188 D flipflops.

• '+' symbols -drawing origins of the standard cells—for the D flip-

flops they are shifted to the left and below the logic cell bottom

left-hand corner.

• Large box surrounding all the logic cells - estimated chip size.

• (This is a screen shot from Cadence Cell Ensemble.)
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The viterbi decoder after floorplanning and placement  
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The viterbi decoder after floorplanning 
and placement  

• 8 rows of standard cells separated by 17 horizontal

channels (labeled 2–18).

• Channels are routed as numbered.

• In this example, the I/O pads are omitted to show the

cell placement more clearly.
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Floorplanning Goals and Objectives
• The input to a floorplanning tool is a hierarchical netlist that describes 

– the interconnection of the blocks (RAM, ROM, ALU, cache controller, and so on)
– the logic cells (NAND, NOR, D flip-flop, and so on) within the blocks
– the logic cell connectors (terminals , pins , or ports) 

• The netlist is a logical description of the ASIC; 
• The floorplan is a physical description of an ASIC. 
• Floorplanning is a mapping between the logical description (the 

netlist) and the physical description (the floorplan). 

The Goals of Floorplanning are to:
• Arrange the blocks on a chip, 
• Decide the location of the I/O pads, 
• Decide the location and number of the power pads, 
• Decide the type of power distribution, and 
• Decide the location and type of clock distribution. 

Objectives of Floorplanning –
To minimize the chip area 
To minimize delay. 

Measuring area is straightforward, but measuring delay is more difficult
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Measurement of Delay in Floor planning

•Floor planning - To predict interconnect delay by
estimating interconnect length.
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Measurement of Delay in Floor planning
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Measurement of Delay in Floor planning 
(contd.,)

• A floorplanning tool can use predicted-capacitance tables (also
known as interconnect-load tables or wire-load tables ).

• Typically between 60 and 70 percent of nets have a FO = 1.

• The distribution for a FO = 1 has a very long tail, stretching to

interconnects that run from corner to corner of the chip.

• The distribution for a FO = 1 often has two peaks,

corresponding to a distribution for close neighbors in subgroups

within a block, superimposed on a distribution corresponding to

routing between subgroups.
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Measurement of Delay in Floor planning 
(contd.,)

• We often see a twin-peaked distribution at the chip level also,

corresponding to separate distributions for interblock routing (inside

blocks) and intrablock routing (between blocks).

• The distributions for FO > 1 are more symmetrical and flatter than for

FO = 1.

• The wire-load tables can only contain one number, for example the

average net capacitance, for any one distribution.

• Many tools take a worst-case approach and use the 80- or 90-percentile

point instead of the average. Thus a tool may use a predicted

capacitance for which we know 90 percent of the nets will have less

than the estimated capacitance.
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• Repeat the statistical analysis for blocks with different sizes.

For example, a net with a FO = 1 in a 25 k-gate block will have a different

(larger) average length than if the net were in a 5 k-gate block.

• The statistics depend on the shape (aspect ratio) of the block

(usually the statistics are only calculated for square blocks).

• The statistics will also depend on the type of netlist.

For example, the distributions will be different for a netlist generated by

setting a constraint for minimum logic delay during synthesis—which tends

to generate large numbers of two-input NAND gates—than for netlists

generated using minimum-area constraints.

Measurement of Delay in Floor planning 
(contd.,)
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Floorplanning - Optimization 

Optimize Performance

• Chip area.

• Total wire length.

• Critical path delay.

• Routability.

• Others, e.g. noise, heat dissipation.

Cost = αA + βL, 

Where

A = total area,

L = total wire length, 

α and β constants.
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Floorplanning

Area

•Deadspace

•Minimizing area = Minimizing 

deadspace
• Wire length estimation
• Exact wire length not known until 

after routing.

• Pin position not known.

• How to estimate?
• Center to center estimation. 170



Floorplanning Tools
• Flexible blocks (or variable blocks ) :

– Their total area is fixed, 
– Their shape (aspect ratio) and connector locations may be adjusted during the placement. 

• Fixed blocks:
– The dimensions and connector locations of the other fixed blocks (perhaps RAM, ROM, compiled 

cells, or megacells) can only be modified when they are created.

• Seeding:
– Force logic cells to be in selected flexible blocks by seeding . We choose seed cells by name.
– Seeding may be hard or soft. 

• Hard seed - fixed and not allowed to move during the remaining floor 
planning and placement steps. 

• Soft seed - an initial suggestion only and can be altered if necessary by the 
floor planner.

• Seed connectors within flexible blocks—forcing certain nets to appear in a 
specified order, or location at the boundary of a flexible block. 

• Rat’s nest:-display the connection between the blocks

• Connections are shown as bundles between the centers of blocks or as flight 
lines between connectors. 171



Aspect Ratio Bounds

No Bounds

With Bounds
lower bound ≤ height/width ≤ upper bound

•Block 4

•Block 3

•Block 2

•Block 1

•NOT 

GOOD!!

•Soft Blocks
• Flexible shape

• I/O positions not yet determined

•Hard Blocks
• Fixed shape

• Fixed I/O pin positions 172



Sizing example*
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Floorplanning Tools

Floorplanning a cell-based ASIC.
(a) Initial floorplan generated by the floorplanning tool. Two of the blocks are flexible (A and C)

and contain rows of standard cells (unplaced). A pop-up window shows the status of block A.
(b) An estimated placement for flexible blocks A and C. The connector positions are known and a
rat’s nest display shows the heavy congestion below block B.
(c) Moving blocks to improve the floorplan.

(d) The updated display shows the reduced congestion after the changes.
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(a) The initial floorplan with a 2:1.5 die aspect ratio.

(b) Altering the floorplan to give a 1:1 chip aspect ratio.

Congestion analysis-One measure of congestion is the difference between the number of

interconnects that we actually need, called the channel density , and the channel capacity
(c) A trial floorplan with a congestion map. Blocks A and C have been placed so that we know the terminal

positions in the channels. Shading indicates the ratio of channel density to the channel capacity. Dark areas

show regions that cannot be routed because the channel congestion exceeds the estimated capacity.

(d) Resizing flexible blocks A and C alleviates congestion.

•Aspect ratio and Congestion 
Analysis
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Channel Definition

•Channel definition or channel allocation

•During the floorplanning step, assign the areas between blocks that are to be
used for interconnect.

•Routing a T-junction between two channels in two-level metal.

•The dots represent logic cell pins.

•(a) Routing channel A (the stem of the T) first allows us to adjust the width of channel
B. (b) If we route channel B first (the top of the T), this fixes the width of channel A.

•Route the stem of a T-junction before route the top.
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Channel Routing 

•Defining the channel routing order for a slicing floorplan using a slicing tree. 

•(a) Make a cut all the way across the chip between circuit blocks. Continue slicing until each
piece contains just one circuit block. Each cut divides a piece into two without cutting
through a circuit block.

•(b) A sequence of cuts: 1, 2, 3, and 4 that successively slices the chip until only circuit blocks
are left.

•(c) The slicing tree corresponding to the sequence of cuts gives the order in which to route
the channels: 4, 3, 2, and finally 1.
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Slicing Floorplan and General Floorplan

•non-slicing floorplan

•Slicing Tree

•1 •2

•h

•v

•h

•7•4

•v•v

•3 •h

•6•5

•Slicing floorplan

•1

•2

•3
•5

•6

•4 •7
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Area Utilization

• Area utilization

– Depends on how nicely the rigid modules’ shapes are 

matched

– Soft modules can take different shapes to “fill in” 

empty slots

– Floorplan sizing
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•7 •6

•2
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•
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•
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•
m

7

•m1

•
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•Area = 20x22 = 440•Area = 20x19 = 380179



Slicing Floorplan Sizing

• Bottom-up process

– Has to be done per floorplan perturbation

– Requires O(n) time (N is the # of shapes of all modules)

•V

•L •R

•H

•T •B

•bi
•ai

•yj•xj

•bi+ yj

•max(ai, xj)

•bi•ai

•max(bi, yj)

•ai+ xj

•yj•xj
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Slicing Floorplan Sizing

• Simple case: all modules are hard macros

– No rotation allowed, one shape only

•17x16

•m1

•9x15

•m7

•m
6

•9x7

•m5

•8x16

•8x11•m
2

•m
4

•m
3

•4x11

•1234567

•167 •2345

•234 •5•1•67

•4•3

•6 •2•7 •34

•4x7 •5x4

•8x8

•4x8

•3x6 •4x5

•7x5

•1
•3

•4

•5

•2

•6•7
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•Slicing Floorplan Sizing

 General case: all modules are soft macros

 Stockmeyer’s work (1983) for optimal module orientation

 Non-slicing = NP complete

 Slicing = polynomial time solvable with dynamic programming

 Phase 1: bottom-up

 Input: floorplan tree, modules shapes

 Start with sorted shapes lists of modules

 Perform Vertical_Node_Sizing & Horizontal_Node_Sizing

 When get to the root node, we have a list of shapes. Select the one 

that is best in terms of area

 Phase 2: top-down

 Traverse the floorplan tree and set module locations
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Sizing Example

•A •B •a1 •a2 •a3

•4x6 •5x5 •6x4

•b1

•b2

•b3

•3x4

•2x7

•4x2

•6x7 •7x7 •8x7

•b1•a1 •b1
•a2

•b1
•a3

•7x6 •8x5 •9x4

•b2
•a1

•b2•a2 •b2•a3

•8x6 •9x5 •10x4

•b3
•a1

•b3
•a2

•b3
•a3
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Cyclic Constraints

•Cyclic constraints.

•(a) A nonslicing floorplan with a cyclic constraint that prevents channel routing.
(b) In this case it is difficult to find a slicing floorplan without increasing the chip
area.

•(c) This floorplan may be sliced (with initial cuts 1 or 2) and has no cyclic
constraints, but it is inefficient in area use and will be very difficult to route.
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Cyclic Constraints

•

•(a) We can eliminate the cyclic constraint by merging the blocks A and C. 

•(b) A slicing structure. 
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I/O and Power Planning (contd.,)

• Every chip communicates with the outside world.

• Signals flow onto and off the chip and we need to supply
power.

• We need to consider the I/O and power constraints early
in the floorplanning process.

• A silicon chip or die (plural die, dies, or dice) is mounted
on a chip carrier inside a chip package . Connections are
made by bonding the chip pads to fingers on a metal lead
frame that is part of the package.

• The metal lead-frame fingers connect to the package pins
. A die consists of a logic core inside a pad ring .

• On a pad-limited die we use tall, thin pad-limited pads ,
which maximize the number of pads we can fit around
the outside of the chip.

• On a core-limited die we use short, wide core-limited
pads . 186
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I/O and Power Planning

•FIGURE 16.12 Pad-limited and core-limited die. (a) A pad-limited die. The number of 
pads determines the die size. (b) A core-limited die: The core logic determines the die 
size. (c) Using both pad-limited pads and core-limited pads for a square die. 
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I/O and Power Planning (contd.,)

• Special power pads are used for:1. positive supply, or VDD, power buses 
(or power rails ) and 

2. ground or negative supply, VSS or GND. 

– one set of VDD/VSS pads supplies power to the I/O pads only. 

– Another set of VDD/VSS pads connects to a second power ring that supplies the logic core.

• I/O power  as dirty power
– It has to supply large transient currents to the output transistors.
– Keep dirty power separate to avoid injecting noise into the internal-logic power (the clean 

power ).

• I/O pads also contain special circuits to protect against electrostatic discharge 
( ESD ). 

– These circuits can withstand very short high-voltage (several kilovolt) pulses that can be generated 
during human or machine handling. 
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I/O and Power Planning (contd.,)

• If we make an electrical connection between the substrate and a chip pad, or to a
package pin, it must be to VDD ( n -type substrate) or VSS ( p -type substrate). This
substrate connection (for the whole chip) employs a down bond (or drop bond) to the
carrier. We have several options:

 We can dedicate one (or more) chip pad(s) to down bond to the chip carrier.

 We can make a connection from a chip pad to the lead frame and down bond
from the chip pad to the chip carrier.

 We can make a connection from a chip pad to the lead frame and down bond
from the lead frame.

 We can down bond from the lead frame without using a chip pad.

 We can leave the substrate and/or chip carrier unconnected.

• Depending on the package design, the type and positioning of down bonds may be fixed.
This means we need to fix the position of the chip pad for down bonding using a pad
seed
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I/O and Power Planning (contd.,)

• A double bond connects two pads to one chip-carrier finger and one package
pin. We can do this to save package pins or reduce the series inductance of
bond wires (typically a few nanohenries) by parallel connection of the pads.

• To reduce the series resistive and inductive impedance of power supply
networks, it is normal to use multiple VDD and VSS pads.

• This is particularly important with the simultaneously switching outputs (
SSOs ) that occur when driving buses

– The output pads can easily consume most of the power on a CMOS ASIC, because the load on
a pad (usually tens of picofarads) is much larger than typical on-chip capacitive loads.

– Depending on the technology it may be necessary to provide dedicated VDD and VSS pads for
every few SSOs. Design rules set how many SSOs can be used per VDD/VSS pad pair. These
dedicated VDD/VSS pads must “follow” groups of output pads as they are seeded or planned on
the floorplan.
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I/O and Power Planning (contd.,)

• Using a pad mapping, we translate the logical pad in a netlist to a physical 
pad from a pad library. We might control pad seeding and mapping in the 
floorplanner. 

• There are several nonobvious factors that must be considered when 
generating a pad ring:

• Design library pad cells for one orientation.
– For example, an edge pad for the south side of the chip, and a corner pad for the

southeast corner.
– Generate other orientations by rotation and flipping (mirroring).
– Some ASIC vendors will not allow rotation or mirroring of logic cells in the mask file.

To avoid these problems we may need to have separate horizontal, vertical, left-
handed, and right-handed pad cells in the library with appropriate logical to physical
pad mappings.

• Mixing of pad-limited and core-limited edge pads in the same pad
ring complicates the design of corner pads.

– In this case a corner pad also becomes a pad-format changer, or hybrid corner pad .

• In single-supply chips we have one VDD net and one VSS net, both
global power nets . It is also possible to use mixed power supplies
(for example, 3.3 V and 5 V) or multiple power supplies ( digital VDD,
analog VDD).
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I/O and Power Planning (contd.,)

•FIGURE 16.13 Bonding pads. (a) This chip uses both pad-limited and core-limited pads. (b) A hybrid 
corner pad. (c) A chip with stagger-bonded pads. (d) An area-bump bonded chip (or flip-chip). The chip is 

turned upside down and solder bumps connect the pads to the lead frame 193



I/O and Power Planning (contd.,)

• stagger-bond arrangement using two rows of I/O pads.
– In this case the design rules for bond wires (the spacing and the angle at which the

bond wires leave the pads) become very important.

• Area-bump bonding arrangement (also known as flip-chip, solder-
bump) used, for example, with ball-grid array ( BGA ) packages.

– Even though the bonding pads are located in the center of the chip, the I/O circuits
are still often located at the edges of the chip because of difficulties in power
supply distribution and integrating I/O circuits together with logic in the center of
the die.

• In an MGA, the pad spacing and I/O-cell spacing is fixed—each pad
occupies a fixed pad slot (or pad site ). This means that the properties
of the pad I/O are also fixed but, if we need to, we can parallel adjacent
output cells to increase the drive. To increase flexibility further the I/O
cells can use a separation, the I/O-cell pitch , that is smaller than the
pad pitch .
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I/O and Power Planning (contd.,)

•FIGURE 16.14 Gate-array I/O pads. (a) Cell-based 
ASICs may contain pad cells of different sizes and 
widths. (b) A corner of a gate-array base. (c) A 
gate-array base with different I/O cell and pad 
pitches 

195



I/O and Power Planning (contd.,)

• The long direction of a rectangular channel is the channel spine .

• Some automatic routers may require that metal lines parallel to a channel 
spine use a preferred layer (either m1, m2, or m3). Alternatively we say that 
a particular metal layer runs in a preferred direction . 
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I/O and Power Planning (contd.,)

•FIGURE 16.15 Power distribution. (a) Power distributed using m1 for VSS and m2 for VDD. This helps 
minimize the number of vias and layer crossings needed but causes problems in the routing channels. 
(b) In this floorplan m1 is run parallel to the longest side of all channels, the channel spine. This can 
make automatic routing easier but may increase the number of vias and layer crossings. (c) An 
expanded view of part of a channel (interconnect is shown as lines). If power runs on different layers 
along the spine of a channel, this forces signals to change layers. (d) A closeup of VDD and VSS buses as 

they cross. Changing layers requires a large number of via contacts to reduce resistance. 
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Power distribution.

• (a) Power distributed using m1 for VSS and m2 for VDD.
– This helps minimize the number of vias and layer crossings needed

– but causes problems in the routing channels.

• (b) In this floorplan m1 is run parallel to the longest side of all
channels, the channel spine.

– This can make automatic routing easier

– but may increase the number of vias and layer crossings.

• (c) An expanded view of part of a channel (interconnect is shown as
lines). If power runs on different layers along the spine of a channel,
this forces signals to change layers.

• (d) A closeup of VDD and VSS buses as they cross. Changing layers
requires a large number of via contacts to reduce resistance.
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Clock Planning

• clock spine routing scheme with all clock pins driven directly from the clock
driver. MGAs and FPGAs often use this fish bone type of clock distribution
scheme

• clock skew and clock latency
•FIGURE 16.16 Clock distribution.

•(a) A clock spine for a gate array.

•(b) A clock spine for a cell-based ASIC
(typical chips have thousands of clock
nets).

•(c) A clock spine is usually driven from
one or more clock-driver cells. Delay in
the driver cell is a function of the
number of stages and the ratio of output
to input capacitance for each stage
(taper).

•(d) Clock latency and clock skew. We
would like to minimize both latency and
skew.
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Clock Planning (cont.,)
• FIGURE 16.17 A clock tree. (a) Minimum delay is achieved when the taper of

successive stages is about 3. (b) Using a fanout of three at successive nodes.
(c) A clock tree for the cell-based ASIC of Figure 16.16 b. We have to balance
the clock arrival times at all of the leaf nodes to minimize clock skew.
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Placement

•203

 The process of arranging circuit components on a layout
surface undercertain constraints.

 Inputs : Set of fixed modules, netlist

 Output : Best position for each module based on various
cost functions

 Cost functions include wirelength, wire routability,
hotspots, performance, I/O pads.

 Placement is much more suited to automation than
floorplanning.

 After we complete floorplanning and placement, we can
predict both intrablock and interblock capacitances



Good placement vs Bad placement*

 Good placement
 No congestion

 Shorter wires

 Less metal levels

 Smaller delay

 Lower power dissipation

 Bad placement

 Congestion

 Longer wire lengths

 More metal levels

 Longer delay

 Higher power dissipation

•204



Placement Terms and Definitions

 CBIC, MGA, and FPGA architectures all have rows of logic cells separated by the 

interconnect—these are row-based ASICs 

•FIGURE 16.18 INTERCONNECT STRUCTURE. (a) The two-level metal CBIC floorplan shown in Figure 16.11

b. (b) A channel from the flexible block A. This channel has a channel height equal to the maximum channel density of 

7 (there is room for seven interconnects to run horizontally in m1). (c)A channel that uses OTC (over-the-cell) routing 

in m2. 
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•FIGURE 16.19 GATE-ARRAY INTERCONNECT. (a) A small two-level metal gate array (about 4.6 k-

gate). (b) Routing in a block. (c) Channel routing showing channel density and channel capacity. The channel 

height on a gate array may only be increased in increments of a row. If the interconnect does not use up all of 

the channel, the rest of the space is wasted. The interconnect in the channel runs in m1 in the horizontal 

direction with m2 in the vertical direction. 
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Vertical interconnect uses feedthroughs to cross the logic cells. Here are some 
commonly used terms with explanations (there are no generally accepted 
definitions):

 An unused vertical track (or just track ) in a logic cell is called an uncommitted 
feedthrough (also built-in feedthrough , implicit feedthrough , or jumper ). 

 A vertical strip of metal that runs from the top to bottom of a cell (for double-entry 
cells ), but has no connections inside the cell, is also called a feedthrough or 
jumper. 

 Two connectors for the same physical net are electrically equivalent connectors 
(or equipotential connectors ). for double-entry cells these are usually at the top 
and bottom of the logic cell. 

 A dedicated feedthrough cell (or crosser cell ) is an empty cell (with no logic) that 
can hold one or more vertical interconnects. These are used if there are no other 
feedthroughs available. 

 A feedthrough pin or feedthrough terminal is an input or output that has 
connections at both the top and bottom of the standard cell. 

 A spacer cell (usually the same as a feedthrough cell) is used to fill space in rows 
so that the ends of all rows in a flexible block may be aligned to connect to power 
buses, for example. 
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 There are also LOGICALLY EQUIVALENT CONNECTORS (or FUNCTIONALLY

EQUIVALENT CONNECTORS, sometimes also called just EQUIVALENT

CONNECTORS—which is very confusing).

 Example: The two inputs of a two-input NAND gate may be logically equivalent

connectors. The placement tool can swap these without altering the logic (but the two

inputs may have different delay properties, so it is not always a good idea to swap

them).

 There can also be LOGICALLY EQUIVALENT CONNECTOR GROUPS . For example, in an

OAI22 (OR-AND-INVERT) gate there are four inputs: A1, A2 are inputs to one OR gate

(gate A), and B1, B2 are inputs to the second OR gate (gate B). Then group A = (A1, A2) is

logically equivalent to group B = (B1, B2)—if we swap one input (A1 or A2) from gate A to

gate B, we must swap the other input in the group (A2 or A1).
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Interconnect Area for CBIC,MGA and FPGA

HORIZONTAL INTERCONNECT

 In the case of channeled gate arrays and FPGAs, the horizontal interconnect 
areas—the channels, usually on m1—have a fixed capacity.

 The channel capacity of CBICs and channelless MGAs can be expanded to 
hold as many interconnects as are needed. Normally we choose, as an objective, 
to minimize the number of interconnects that use each channel.

VERTICAL INTERCONNECT

 In the vertical interconnect direction, usually m2, FPGAs still have fixed 
resources. 

 In contrast the placement tool can always add vertical feedthroughs to a 
channeled MGA, channelless MGA, or CBIC. These problems become less 
important as we move to three and more levels of interconnect. 
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Placement Goals and Objectives

The goal of a placement tool is to arrange all the logic cells within the flexible 

blocks on a chip. 

Ideally, the objectives of the placement step are to

 Guarantee the router can complete the routing step 

 Minimize all the critical net delays 

 Make the chip as dense as possible 

We may also have the following additional objectives:
 Minimize power dissipation 

 Minimize cross talk between signals 

Current placement tools use more specific and achievable criteria. The most 
commonly used placement objectives are one or more of the following:

 Minimize the total estimated interconnect length 

 Meet the timing requirements for critical nets 

 Minimize the interconnect congestion 
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Measurement of Placement Goals and Objectives

 The graph structures that correspond to making all the connections for a net 
are known as trees on graphs (or just trees ).

 Special classes of trees— Steiner trees —minimize the total length of 
interconnect and they are central to ASIC routing algorithms. 

 Minimum Steiner tree - This type of tree uses diagonal connections—we 
want to solve a restricted version of this problem, using interconnects on a 
rectangular grid. This is called rectilinear routing or Manhattan routing.

 Euclidean distance between two points is the straight-line distance.

 The Manhattan distance (or rectangular distance) between two points is the 
distance we would have to walk in New York. 
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•FIGURE 16.20 Placement using trees on graphs. (a) The floorplan from Figure 16.11 b. (b) An expanded view 

of the flexible block A showing four rows of standard cells for placement (typical blocks may contain 

thousands or tens of thousands of logic cells). We want to find the length of the net shown with four terminals, 

W through Z, given the placement of four logic cells (labeled: A.211, A.19, A.43, A.25). (c) The problem for 

net (W, X, Y, Z) drawn as a graph. The shortest connection is the minimum Steiner tree. (d) The minimum 

rectilinear Steiner tree using Manhattan routing. The rectangular (Manhattan) interconnect-length measures are 

shown for each tree 
•212

http://iroi.seu.edu.cn/books/asics/Book/CH16/CH16.1.htm#36876


Measurement of Placement (contd.,)

 The minimum rectilinear Steiner tree ( MRST ) is the shortest interconnect using 
a rectangular grid.The determination of the MRST is in general an NP-complete 
problem—which means it is hard to solve.

 The complete graph has connections from each terminal to every other terminal.

 The complete-graph measure adds all the interconnect lengths of the complete-graph 
connection together and then divides by n /2, where n is the number of terminals. 

Complete graph = (n ( n -1) ) / 2 )

 The bounding box is the smallest rectangle that encloses all the terminals.

 half-perimeter measure (or bounding-box measure) is one-half the perimeter of the 
bounding box.

half perimeter  f = ½ Σm
i=1 hi

where m is the nets, hi is the half perimeter measure for net i.
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FIGURE 16.21 Interconnect-length measures. (a) Complete-

graph measure. (b) Half-perimeter measure.
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Correlation between total length of chip interconnect and the half-

perimeter and complete-graph measures.

 Meander factor that specifies, on average, the ratio of the interconnect created by the 

routing tool to the interconnect-length estimate used by the placement tool.

 Another problem is that we have concentrated on finding estimates to the MRST, but the 

MRST that minimizes total net length may not minimize net delay.
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Interconnect congestion
 There is no point in minimizing the interconnect length if we create a placement that is

too congested to route.

 If we use minimum interconnect congestion as an additional placement

objective, we need some way of measuring it.

 What we are trying to measure is interconnect density

 One measure of interconnect congestion uses the maximum cut line .

 Maximum cut line: Imagine a horizontal or vertical line drawn anywhere across a chip or

block,

 The number of interconnects that must cross this line is the cut size (the number of

interconnects we cut).The maximum cut line has the highest cut size.
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•FIGURE 16.23 Interconnect congestion for the cell-based 

ASIC from Figure 16.11 (b). (a) Measurement of 

congestion. (b) An expanded view of flexible block A 

shows a maximum cut line. 
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Interconnect Delay

 Many placement tools minimize estimated interconnect length or interconnect congestion

as objectives.

 The problem with this approach is that a logic cell may be placed a long way from another

logic cell to which it has just one connection. This logic cell with one connection is less important

as far as the total wire length is concerned than other logic cells, to which there are many connections.

However, the one long connection may be critical as far as timing delay is concerned.

 As technology is scaled, interconnection delays become larger relative to circuit delays and

this problem gets worse.
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Interconnect Delay

 In timing-driven placement we must estimate delay for every net for every trial

placement, possibly for hundreds of thousands of gates.

 Unfortunately, the minimum-length Steiner tree does not necessarily correspond to the

interconnect path that minimizes delay. To construct a minimum-delay path we may have to

route with non-Steiner trees.

 In the placement phase typically we take a simple interconnect length approximation to this

minimum-delay path (typically the half-perimeter measure).

 Even when we can estimate the length of the interconnect, we do not yet have information on

which layers and how many vias the interconnect will use or how wide it will be. Some tools

allow us to include estimates for these parameters.

 Often we can specify metal usage , the percentage of routing on the different layers to expect

from the router. This allows the placement tool to estimate RC values and delays—and thus

minimize delay.
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Placement Algorithms

There are two classes of placement algorithms commonly used in commercial

CAD tools: 

 constructive placement - uses a set of rules to arrive at a constructed placement. 

Example :min-cut algorithm. Eigenvalue method. 

 iterative placement improvement. 

As in system partitioning, placement usually starts with a constructed solution  

and then improves it using an iterative algorithm. 

The min-cut placement method uses successive application of partitioning. The 

following steps are,

 Cut the placement area into two pieces. 

 Swap the logic cells to minimize the cut cost. 

 Repeat the process from step 1, cutting smaller pieces until all the logic cells are 
placed

Usually we divide the placement area into bins . The size of a bin can vary, 

from a bin size equal to the base cell (for a gate array) to a bin size that would 

hold several logic cells. We can start with a large bin size, to get a rough 

placement, and then reduce the bin size to get a final placement. 
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•FIGURE 16.24 Min-cut placement. (a) Divide the chip into bins using a grid. (b) Merge all connections to 

the center of each bin. (c) Make a cut and swap logic cells between bins to minimize the cost of the cut. 

(d) Take the cut pieces and throw out all the edges that are not inside the piece. (e) Repeat the process with a 

new cut and continue until we reach the individual bins. 
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Eigen Value Placement Algorithm
The eigenvalue placement algorithm uses the cost matrix or weighted connectivity matrix (eigen

value methods are also known as spectral methods ) [Hall, 1970]. The measure we use is a cost
function f that we shall minimize, given by ,

(1)

where C = [ c ij ] is the (possibly weighted) connectivity matrix, and d ij is the Euclidean distance
between the centers of logic cell i and logic cell j . Since we are going to minimize a cost function that is
the square of the distance between logic cells, these methods are also known as quadratic placement
methods. This type of cost function leads to a simple mathematical solution. We can rewrite the cost
function f in matrix form:

B is a symmetric matrix, the disconnection matrix (also called the Laplacian).

B= D- C

C – Connectivity Matrix ; D – Diagonal Matrix or Degree Matrix
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where,

We can simplify the problem by noticing that it is symmetric in the x - and y -coordinates.

Let us solve the simpler problem of minimizing the cost function for the placement of logic cells
along just the x – axis first. We can then apply this solution to the more general two-dimensional
placement problem.

Before we solve this simpler problem, we introduce a constraint that the coordinates of the logic
cells must correspond to valid positions (the cells do not overlap and they are placed on-grid). We
make another simplifying assumption that all logic cells are the same size and we must place
them in fixed positions. We can define a vector p consisting of the valid positions:

(4)

For a valid placement the x -coordinates of the logic cells,

(5)
must be a permutation of the fixed positions, p . We can show that requiring the logic cells to be in 

fixed positions in this way leads to a series of n equations restricting the values of the logic cell 

coordinates .If we impose all of these constraint equations the problem becomes very complex. 
Instead we choose just one of the equations:

(6)
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Simplifying the problem in this way will lead to an approximate solution to the placement 
problem. We can write this single constraint on the x -coordinates in matrix form: ,

where P is a constant. 
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We can now summarize the formulation of the problem, with the simplifications that we have 
made, for a one-dimensional solution. We must minimize a cost function, g, where 

(8)
subject to the constraint: 

(9)

This is a standard problem that we can solve using a Lagrangian multiplier: 

(10)

To find the value of x that minimizes g we differentiate L partially with respect to x and set the 
result  equal to zero. We get the following equation: 

(11)

This last equation is called the characteristic equation for the disconnection matrix B and occurs 
frequently in matrix algebra (this l has nothing to do with scaling). The solutions to this 
equation are  the eigenvectors and eigenvalues of B . Multiplying Eq.(11) by x T we get: 

However, since we imposed the constraint x T x = P and x T Bx = g , then 

The eigenvectors of the disconnection matrix B are the solutions to our 

placement problem. 
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Iterative Placement Improvement

An iterative placement improvement algorithm takes an existing placement and 

tries to improve it by moving the logic cells. There are two parts to the 

algorithm:

 The selection criteria that decides which logic cells to try moving. 

 The measurement criteria that decides whether to move the selected cells. 

There are several interchange or iterative exchange methods that differ in their 

selection and measurement criteria:

 Pair wise interchange, 

 force-directed interchange, 

 force-directed relaxation, and 

 force-directed pair wise relaxation. 

All of these methods usually consider only pairs of logic cells to be exchanged.

A source logic cell is picked for trial exchange with a destination logic cell
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Iterative Placement Improvement

An iterative placement improvement algorithm takes an existing placement and 

tries to improve it by moving the logic cells. There are two parts to the 

algorithm:

 The selection criteria that decides which logic cells to try moving. 

 The measurement criteria that decides whether to move the selected cells. 

There are several interchange or iterative exchange methods that differ in their 

selection and measurement criteria:

 Pair wise interchange, 

 force-directed interchange, 

 force-directed relaxation, and 

 force-directed pair wise relaxation. 

All of these methods usually consider only pairs of logic cells to be exchanged.

A source logic cell is picked for trial exchange with a destination logic cell
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Iterative Placement Improvement

(contd.,)

The pair wise-interchange algorithm is similar to the interchange algorithm 

used for iterative improvement in the system partitioning step:

 Select the source logic cell at random. 

 Try all the other logic cells in turn as the destination logic cell. 

 Use any of the measurement methods we have discussed to decide on whether to 
accept the interchange. 

 The process repeats from step 1, selecting each logic cell in turn as a source logic 
cell. 

The neighborhood exchange algorithm is a modification to pairwise 

interchange that considers only destination logic cells in a neighborhood —cells 

within a certain distance, e, of the source logic cell. Limiting the search area for 

the destination logic cell to the e -neighborhood reduces the search time. 
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•FIGURE 16.26 Interchange.

• (a) Swapping the source logic cell with a destination logic cell in pairwise interchange. 

•(b) Sometimes we have to swap more than two logic cells at a time to reach an optimum 

placement, but this is expensive in computation time. Limiting the search to 

neighborhoods reduces the search time. Logic cells within a distance e of a logic cell 

form an e-neighborhood. 

•(c) A one-neighborhood. 

•(d) A two-neighborhood. •230



Iterative Placement Improvement

(contd.,)

Force-directed placement methods:

Imagine identical springs connecting all the logic cells we wish to place. The
number of springs is equal to the number of connections between logic cells. The
effect of the springs is to pull connected logic cells together. The more highly connected the
logic cells, the stronger the pull of the springs. The force on a logic cell i due to logic
cell j is given by Hooke’s law , which says the force of a spring is proportional to its
extension:

F ij = – c ij x ij .

 The vector component x ij is directed from the center of logic cell i to the center of logic 
cell j . 

 The vector magnitude is calculated as either the Euclidean or 

Manhattan distance between the logic cell centers. 

 The c ij form the connectivity or cost matrix (the matrix element c ij is the 

number of connections between logic cell i and logic cell j ). 
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•FIGURE 16.27 Force-directed placement. 

• (a) A network with nine logic cells.

• (b) We make a grid (one logic cell per bin).

• (c) Forces are calculated as if springs were attached to the 

centers of each logic cell for each connection.The two nets 

connecting logic cells A and I correspond to two springs. 

•(d) The forces are proportional to the spring extensions. 
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Iterative Placement Improvement

(contd.,)

Force-directed placement algorithms:

 The force-directed interchange algorithm uses the force vector to select a 

pair of logic cells to swap.

 The force-directed relaxation a chain of logic cells is moved.

 The force-directed pairwise relaxation algorithm swaps one pair of logic 

cells at a time. 

We reach a force-directed solution when we minimize the energy of the system,  

corresponding to minimizing the sum of the squares of the distances 

separating logic cells. Force-directed placement algorithms thus also use a quadratic 

cost function. 
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•FIGURE 16.28 Force-directed iterative placement 

improvement. 

•(a) Force-directed interchange.

•(b) Force-directed relaxation. 

•(c) Force-directed pairwise relaxation. 
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Placement Using Simulated Annealing

Applying simulated annealing to placement, the algorithm is as follows:

 Select logic cells for a trial interchange, usually at random. 

 Evaluate the objective function E for the new placement. 

 If D E is negative or zero, then exchange the logic cells. If D E is positive, then exchange the 
logic cells with a probability of exp(– D E / T ). 

 Go back to step 1 for a fixed number of times, and then lower the temperature T according 
to a cooling schedule: T n +1 = 0.9 T n , for example. 

Experiments show that simple min-cut based constructive placement is 

faster than simulated annealing but that simulated annealing is capable of  giving 
better results at the expense of long computer run times. The iterative improvement 
methods that we described earlier are capable of  giving results as good as simulated 

annealing, but they use more complex algorithms. 
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Timing-Driven Placement Methods

 Minimizing delay is becoming more and more important as a placement

objective.

 There are two main approaches:

– net based

– path based

 We can use net weights in our algorithms.

 The problem is to calculate the weights.

 One method finds the n most critical paths (using a timing-analysis engine,

possibly in the synthesis tool).

 The net weights might then be the number of times each net appears in this list.

Another method to find the net weights uses the zeroslack algorithm.
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Timing-Driven Placement Methods

 Figure 16.29 (a) shows a circuit with primary inputs at which we know the 
arrival times (actual times) of each signal. 

 We also know the required times for the primary outputs the points in 
time at which we want the signals to be valid.

 We can work forward from the primary inputs and backward from the 
primary outputs to determine arrival and required times at each input pin 
for each net.

 The difference between the required and arrival times at each input pin is 
the slack time (the time we have to spare).

 The zero-slack algorithm adds delay to each net until the slacks are zero, as 
shown in Figure 16.29 (b).

 The net delays can then be converted to weights or constraints in the 
placement.
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•FIGURE 16.29

The zero-slack 

algorithm. 

(a) The circuit 

with no net 

delays. 

•(b) The zero-

slack algorithm 

adds net delays 
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Physical design flow

•239



Dr.(Mrs).D.Gracia Nirmala Rani

Assistant Professor

ECE Department

Thiagarajar College of Engineering

Madurai-15

Email : gracia@tce.edu

Module IV

Routing

mailto:gracia@tce.edu


Introduction
 Once the designer has 

 Floorplanned a chip 

 The logic cells within the flexible blocks have been placed

 Time to make the connections by routing the chip.

 This is still a hard problem that is made easier by dividing it into smaller 

problems. 

 Routing is usually split into 

 Global routing followed by detailed routing . 
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•The starting point of floorplaning and placement steps for
the viterbi decoder

•-collection of standard cells with no room set aside yet for
routing. •242



The starting point of floorplaning and 
placement steps for the viterbi    decoder

• Small boxes that look like bricks - outlines of the standard cells.

• Largest standard cells, at the bottom of the display (labeled dfctnb)

- 188 D flipflops.

• '+' symbols -drawing origins of the standard cells—for the D flip-flops

they are shifted to the left and below the logic cell bottom left-hand

corner.

• Large box surrounding all the logic cells - estimated chip size.

• (This is a screen shot from Cadence Cell Ensemble.)
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The viterbi decoder after floorplanning   
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•FIGURE 17.1 The core of the Viterbi decoder chip after placement (a screen shot from 

Cadence Cell Ensemble) •245



•FIGURE 17.2 The core of the Viterbi decoder chip after the completion of global and detailed 

routing (a screen shot from Cadence Cell Ensemble). This chip uses two-level metal. Although you 

cannot see the difference, m1 runs in the horizontal direction and m2 in the vertical direction. 
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Global Routing

• The details of global routing differ slightly between 

– cell-based ASICs, gate arrays, and FPGAs, but the principles are the 

same. 

• A global router does not make any connections, it just plans them.

• Global route the whole chip (or large pieces if it is a large chip) before detail 

routing the whole chip (or the pieces). 
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Goals and Objectives

• Input to routing

– Floorplan that includes the locations of all the fixed and flexible blocks; 

– Placement information for flexible blocks; 

• Locations of all the logic cells.

• Goal of global routing 

– To provide complete instructions to the detailed router on where to 
route every net. 

• Objectives of global routing

– Minimize the total interconnect length. 

– Maximize the probability that the detailed router can complete 
the routing. 

– Minimize the critical path delay. 
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Measurement of Interconnect Delay
• After placement, the logic cell positions are fixed and the global router can afford to use 

better estimates of the interconnect delay.

• To illustrate one method, we shall use the Elmore constant to estimate the interconnect 
delay for the circuit shown in Figure 17.3 . 

•FIGURE 17.3 Measuring the delay of a net. (a) A simple circuit with an inverter A driving a 
net with a fanout of two. Voltages V 1 , V 2 , V 3 , and V 4 are the voltages at intermediate 
points along the net. (b) The layout showing the net segments (pieces of interconnect). 
(c) The RC model with each segment replaced by a capacitance and resistance. The ideal 
switch and pull-down resistance R pd model the inverter A. 
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The problem is to find the voltages at the inputs to logic cells B and C taking 

into account the parasitic resistance and capacitance of the metal interconnect. 

Figure 17.3 (c) models logic cell A as an ideal switch with a pull-down 

resistance equal to R pd and models the metal interconnect using resistors and 

capacitors for each segment of the interconnect. 

•The Elmore constant for node 4 (labeled V 4 ) in the network 
shown in Figure 17.3 (c) is 

4

ζ 4 = ΣR k 4 C k (17.1)

k = 1

= R 14 C 1 + R 24 C 2 + R 34 C 3 + R 44 C 4 ,

R 14 = R pd + R 1 (resistance to V0 shared by 

node 1 and 4)
(17.2)

R 24 = R pd + R 1

R 34 = R pd + R 1 + R 3

R 44 = R pd + R 1 + R 3 + R 4

•where,
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In Eq. 17.2 notice that R 24 = R pd + R 1 (and not R pd + R 1 + R 2 ) because 
R 1 is the resistance to V 0 (ground) shared by node 2 and node 4.

Suppose we have the following parameters (from the generic 0.5 m m CMOS 
process, G5) for the layout shown in Figure 17.3 (b):

• m2 resistance is 50 m Ω /square. 
• m2 capacitance (for a minimum-width line) is 0.2 pFmm –1 . 
• 4X inverter delay is 0.02 ns + 0.5 CLns ( C L is in picofarads). 
• Delay is measured using 0.35/0.65 output trip points. 
• m2 minimum width is 3 λ = 0.9 µm. 
• 1X inverter input capacitance is 0.02 pF (a standard load). 

First we need to find the pull-down resistance, Rpd , of the 4X inverter. If we 
model the gate with a linear pull-down resistor, Rpd , driving a load CL , the 
output waveform is exp – t /( CLRpd ) (normalized to 1V). 

The output reaches 63 percent of its final value when t = CLRpd , because 
exp (–1) = 0.63. Then,because the delay is measured with a 0.65 trip point, the 
constant 0.5 nspF –1  0.5kW is very close to the equivalent pull-down 
resistance. Thus, Rpd = 500 Ω . 
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•m2 resistance is 50 m Ω square. 
•m2 capacitance (for a minimum-width 
line) is 0.2 pFmm –1 . 
•4X inverter delay is 0.02 ns + 0.5 CLns ( 
C L is in picofarads). 
•Delay is measured using 0.35/0.65 
output trip points. 
•m2 minimum width is 3 λ = 0.9 µm. 
•1X inverter input capacitance is 0.02 
pF (a standard load). 



• R1= R2 = 6 Ω

• R3=56 Ω

• R4=112 Ω

• C 1=0.02 pF

• C 2 =0.04 pF 

• C 3=0.2 pF 

• C 4=0.42 pF

Now we can calculate the path resistance, Rki, values (notice that Rki = Rki): 

R14 = 500 Ω + 6 Ω =506 Ω

R24 = 500 Ω + 6 Ω =506 Ω

R34 =500 Ω + 6 Ω + 56 Ω =562 Ω

R44 =500 Ω + 6 Ω + 56 Ω + 112 Ω =674 Ω (17.5)
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Finally, we can calculate Elmore’s constants for node 4 and node 2 as follows: 
ζD4 = R 14 C 1 + R 24 C 2 + R 34 C 3 + R 44 C 4 (17.6)

= (506)(0.02) + (506)(0.04)

+ (562)(0.2) + (674)(0.42)

= 425 ps .ζD2 = R 12 C 1 + R 22 C 2 + R 32 C 3 + R 42 C 4 (17.7)

= ( R pd + R 1 )( C 1 + C 3 + C 4 )

+ ( R pd + R 1 + R 2 ) C 2

= (500 + 6 + 6)(0.04)

+ (500 + 6)(0.02 + 0.2 + 0.2)

= 344 ps .

•and ζD4 – ζD2 = (425 – 344) = 81 ps.

•A lumped-delay model neglects the effects of interconnect resistance 
and simply sums all the node capacitances (the lumped capacitance ) as 
follows: 
• ζD = R pd ( C 1 + C 2 + C 3 + C 4 ) (17.8)

• = (500) (0.02 + 0.04 + 0.2 + 0.42)

• = 340 ps .
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Measurement of delay

The delay of the inverter can be assigned as follows: 

– 20 ps (the intrinsic delay, 0.2 ns, due to the cell output 

capacitance), 

– 340 ps (due to the pull-down resistance and the output 

capacitance), 

– 4 ps (due to the interconnect from A to B), (ζD2- ζD )

– 85 ps (due to the interconnect from A to C) (ζD4- ζD ).
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Measurement of Interconnect Delay (contd.,)

• Even using the Elmore constant we still made the following assumptions in 
estimating the path delays:

• A step-function waveform drives the net. 
• The delay is measured from when the gate input changes. 
• The delay is equal to the time constant of an exponential waveform 

that approximates the actual output waveform. 
• The interconnect is modeled by discrete resistance and capacitance 

elements. 

• The global router could use more sophisticated estimates that remove some 
of these assumptions, but there is a limit to the accuracy with which delay 
can be estimated during global routing 

• When the global router attempts to minimize interconnect delay, there is 
an important difference between a path and a net. 

• The path that minimizes the delay between two terminals on a net is not 
necessarily the same as the path  that minimizes the total path length of 
the net. 
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Global Routing Methods

• Many of the methods used in global routing are based on the solutions to the 
tree on a graph problem. 

• sequential routing :

One approach to global routing takes each net in turn and calculates
the shortest path using tree on graph algorithms—with the added
restriction of using the available channels.

Disadvantage:

• As a sequential routing algorithm proceeds, some channels will
become more congested since they hold more interconnects than
others.

• In the case of FPGAs and channeled gate arrays, the channels have a
fixed channel capacity and can only hold a certain number of
interconnects.
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Global Routing Methods (contd.,)

• There are two different ways that a global router normally handles this problem.

1.Order independent Routing

2.Order dependent Routing

• Order-independent routing, a global router proceeds by routing each net, ignoring
how crowded the channels are. Whether a particular net is processed first or last does
not matter, the channel assignment will be the same.

• Order-independent routing, after all the interconnects are assigned to channels, the
global router returns to those channels that are the most crowded and reassigns some
interconnects to other, less crowded, channels.

• order dependent :A global router can consider the number of interconnects already
placed in various channels as it proceeds. In this case the global routing is order
dependent —the routing is still sequential, but now the order of processing the nets will
affect the results.

• Iterative improvement or simulated annealing may be applied to the solutions found
from both order-dependent and order-independent algorithms.
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Global Routing Methods (contd.,)

• Hierarchical routing handles all nets at a particular level at once. 

• Rather than handling all of the nets on the chip at the same time, the global-
routing problem is made more tractable by dividing the chip area into levels of 
hierarchy. 

• By considering only one level of hierarchy at a time the size of the problem is 
reduced at each level. 

• There are two ways to traverse the levels of hierarchy.
• top-down approach :- Starting at the whole chip, or highest level, and 

proceeding down to the logic cells is the. 

• The bottom-up approach starts at the lowest level of hierarchy and globally 
routes the smallest areas first. 
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Global Routing

• There are two types of areas to global route:

– between blocks

– inside the flexible blocks 
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Global Routing Between Blocks

•FIGURE 17.4 Global routing for a cell-based ASIC formulated 
as a graph problem. (a) A cell-based ASIC with numbered 
channels. (b) The channels form the edges of a graph. (c) The 
channel-intersection graph. Each channel corresponds to an 
edge on a graph whose weight corresponds to the channel 
length. •261



Global Routing Between Blocks
( contd.,)

•FIGURE 17.5 Finding paths in global routing. (a) A cell-based ASIC showing a single net 
with a fanout of four (five terminals). We have to order the numbered channels to complete 
the interconnect path for terminals A1 through F1. (b) The terminals are projected to the 
center of the nearest channel, forming a graph. A minimum-length tree for the net that uses 
the channels and takes into account the channel capacities. (c) The minimum-length tree 
does not necessarily correspond to minimum delay. If we wish to minimize the delay 
from terminal A1 to D1, a different tree might be better. •262



Global Routing Between Blocks
( contd.,)

• Global routing is very similar for cell-based ASICs and gate arrays, but there
is a very important difference between the types of channels in these
ASICs.

• In channeled gate-arrays and FPGAs the size, number, and location of
channels are fixed.

• Advantage - the global router can allocate as many interconnects to each
channel as it likes, since that space is committed anyway.

• Disadvantage - there is a maximum number of interconnects that each
channel can hold.

• If the global router needs more room, even in just one channel on the whole
chip, the designer has to repeat the placement-and-routing steps and try again
(or use a bigger chip).
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Global Routing Inside Flexible Blocks

•FIGURE 17.6 Gate-array global routing. (a) A small gate array. (b) An enlarged view of the routing. The 
top channel uses three rows of gate-array base cells; the other channels use only one. (c) A further 
enlarged view showing how the routing in the channels connects to the logic cells. (d) One of the logic 
cells, an inverter. (e) There are seven horizontal wiring tracks available in one row of gate-array base 

cells—the channel capacity is thus 7
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Global Routing Inside Flexible Blocks (contd.,)

•FIGURE 17.7 The gate-array inverter from Figure 17.6
d. (a) An oxide-isolated gate-array base cell, showing
the diffusion and polysilicon layers. (b) The metal and
contact layers for the inverter in a 2LM (two-level
metal) process. (c) The router’s view of the cell in a 3LM
process.
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Global Routing Inside Flexible Blocks

FIGURE 17.8 Global routing a gate array. (a) A single global-routing cell (GRC or routing bin) containing 2-by-4 

gate-array base cells. For this choice of routing bin the maximum horizontal track capacity is 14, the maximum 

vertical track capacity is 12. The routing bin labeled C3 contains three logic cells, two of which have feedthroughs

marked 'f'. This results in the edge capacities shown. (b) A view of the top left-hand corner of the gate array 

showing 28 routing bins. The global router uses the edge capacities to find a sequence of routing bins to connect 

the nets. 
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Timing-DrivenMethods

• As in timing-driven placement, there are two main approaches to timing-driven routing:

– net-based and path-based.

• Path-based methods are more sophisticated.

For example, if there is a critical path from logic cell A to B to C, the global router
may increase the delay due to the interconnect between logic cells A and B if it
can reduce the delay between logic cells B and C.

• Placement and global routing tools may or may not use the same algorithm to
estimate net delay. If these tools are from different companies, the algorithms are
probably different.

• The algorithms must be compatible, however. There is no use performing placement to
minimize predicted delay if the global router uses completely different
measurement methods.

• Companies that produce floorplanning and placement tools make sure that the
output is compatible with different routing tools—often to the extent of using different
algorithms to target different routers.
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Back-annotation

• The global router can give not just an estimate of the total net
length (which was all we knew at the placement stage), but the
resistance and capacitance of each path in each net. This RC
information is used to calculate net delays.

• Back-annotate this net delay information
– to the synthesis tool for in-place optimization or

– to a timing verifier to make sure there are no timing surprises.

• Differences in timing predictions at this point arise due to the
different ways in which the placement algorithms estimate the
paths and the way the global router actually builds the paths.
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Detailed Routing

Goal:

• The goal of detailed routing is to complete all the connections between logic 
cells.

Objectives:

• The most common objective is to minimize one or more of the following:

– The total interconnect length and area

– The number of layer changes that the connections have to make

– The delay of critical paths

• Minimizing the number of layer changes corresponds to minimizing the 
number of vias that add parasitic resistance and capacitance to a connection.
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Measurement of Channel Density 
Definition of Local and Global channel density

• Maximum local density of channel is Global density

• Channel density is less than or equal to Channel capacity.
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Left-edge algorithm

The left-edge algorithm ( LEA ) is the basis for several routing algorithms [ 
Hashimoto and Stevens, 1971]. 

The LEA applies to two-layer channel routing, using one layer for the trunks and the 
other layer for the branches. 

For example, m1 may  be used in the horizontal direction and m2 in the vertical 
direction. 

The LEA proceeds as follows:

1. Sort the nets according to the leftmost edges of the net’s horizontal
segment.

2. Assign the first net on the list to the first free track.

3. Assign the next net on the list, which will fit, to the track.

4. Repeat this process from step 3 until no more nets will fit in the current
track.

5. Repeat steps 2–4 until all nets have been assigned to tracks.

6. Connect the net segments to the top and bottom of the channel.
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Left-edge algorithm
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Left-edge algorithm
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Constraints and Routing Graphs

• Two terminals that are in the same column in a channel create a 

vertical constraint .

• Overlap between the trunks of nets is called horizontal constraint.
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Dog-Leg router

• A dogleg router removes the restriction that each net can use only one 

track or trunk.
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Area Routing Algorithm- Lee-Maze algorithm
[For general shaped areas]

• Finds a path from source (X) to target (Y) by emitting a wave from both

the source and the target at the same time.

• Successive outward moves are marked in each bin.

• Once the target is reached, the path is found by backtracking (if there is a

choice of bins with equal labeled values, choose the bin that avoids changing

direction). (The original form of the Lee algorithm uses a single wave.)

1.
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Hightower or line search-Area routing algorithm
[For general shaped areas]

• 1. Extend lines from both the source and target toward each

other.

•2. When an extended line, known as an escape line , meets

an obstacle, choose a point on the escape line from which to

project another escape line at right angles to the old one. This

point is the escape point .
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Special routing- CLK routing

• Gate arrays normally use a clock spine (a regular grid), eliminating the need
for special routing.

• The clock distribution grid is designed at the same time as the gate-array
base to ensure a minimum clock skew and minimum clock latency—given
power dissipation and clock buffer area limitations.

• Cell-based ASICs may use either a clock spine, a clock tree, or a hybrid
approach.

• Figure shows how a clock router may minimize clock skew in a clock spine
by making the path lengths, and thus net delays, to every leaf node equal—
using jogs in the interconnect paths if necessary.

• More sophisticated clock routers perform clocktree synthesis
(automatically choosing the depth and structure of the clock tree) and
clock-buffer insertion (equalizing the delay to the leaf nodes by balancing
interconnect delays and buffer delays).
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Special routing- CLK routing

FIGURE: Clock routing. (a) A clock network for the cellbased ASIC

(b) Equalizing the interconnect segments between CLK and all
destinations (by including jogs if necessary) minimizes clock
skew.
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Special routing- Power routing
• Power bus width

• Each of the power buses has to be sized according to the current it

will carry.

• Too much current in a power bus can lead to a failure through a

mechanism known as electromigration.

• The required power-bus widths can be estimated automatically

from library information, from a separate power simulation tool, or

by entering the power-bus widths to the routing software by

hand.

• Many routers use a default power-bus width so that it is quite easy

to complete routing of an ASIC without even knowing about this

problem.
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Special routing- Power routing

• Gate-Array ASIC

• Gate arrays normally use a regular power grid as part of
the gate-array base.

• The gate-array logic cells contain two fixed-width power
buses inside the cell, running horizontally on m1.

• The horizontal m1 power buses are then strapped in a
vertical direction by m2 buses, which run vertically
across the chip.
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Special routing- Power routing

• Cell-based ASIC

• Standard cells are constructed in a similar fashion to gate-array cells, with

power buses running horizontally in m1 at the top and bottom of each

cell.

• A row of standard cells uses end-cap cells that connect to the VDD and VSS

power buses placed by the power router.

• Power routing of cell-based ASICs may include the option to include

vertical m2 straps at a specified intervals.

• In a three-level metal process, power routing is similar to two-level metal

ASICs. Power buses inside the logic cells are still normally run on m1.

Using HVH routing it would be possible to run the power buses on m3 and

drop vias all the way down to m1 when power is required in the cells. •282



Circuit Extraction
• After detailed routing is complete, the exact length and position of each 

interconnect for every net is known. 

• Now the parasitic capacitance and resistance associated with each 

interconnect, via, and contact can be calculated. 

• This data is generated by a circuit-extraction tool  in one of the formats. 

• standard parasitic format ( SPF ) 

• The standard parasitic format ( SPF ) describes interconnect delay 

and loading due to parasitic resistance and capacitance. 

• There are three different forms of SPF: 

– Two of them ( regular SPF and reduced SPF ) contain the same 

information, but in different formats, and model the behavior of 

interconnect; 

– Third form of SPF ( detailed SPF ) describes the actual parasitic 

resistance and  capacitance components of a net. 
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Circuit Extraction
• The load at the output of gate A is represented by one of three models: lumped-C, 

lumped- RC, or PI segment.

Figure: The regular and reduced standard parasitic format (SPF) models for
interconnect. (a) An example of an interconnect network with fanout. The driving-point
admittance of the interconnect network is Y ( s ). (b) The SPF model of the interconnect.
(c) The lumped-capacitance interconnect model. (d) The lumped-RC interconnect
model. (e) The PI segment interconnect model .

The values of C , R , C 1 , and C 2 are calculated so that Y 1 ( s ), Y 2 ( s ), and Y 3 ( s ) are the
first-, second-, and third-order Taylor-series approximations to Y ( s ).
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Circuit Extraction
The key features of regular and reduced SPF are as follows:

• The loading effect of a net as seen by the driving gate is represented by

choosing one of three different RC networks: lumped-C, lumped-RC, or PI

segment (selected when generating the SPF) [ O’Brien and Savarino, 1989].

• The pin-to-pin delays of each path in the net are modeled by a simple RC

delay (one for each path). This can be the Elmore constant for each path, but it

need not be.

• The reduced SPF ( RSPF) contains the same information as regular SPF,
but uses the SPICE format.

• Detailed SPF:

• The detailed SPF ( DSPF) shows the resistance and capacitance of each
segment in a net, again in a SPICE format. There are no models or
assumptions on calculating the net delays in this format.
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Design-Rule Check ( DRC )
• ASIC designers perform two major checks before fabrication.

• DRC:

• The first check is a design-rule check ( DRC ) to ensure that nothing

has gone wrong in the process of assembling the logic cells and

routing.

• The DRC may be performed at two levels.

• Phantom-Level DRC:

• The first level of DRC is a phantom-level DRC , which checks for
shorts, spacing violations, or other design-rule problems between
logic cells.

• This is principally a check of the detailed router.

• If the real library-cell layouts (sometimes called hard layout ) can be

accessed, we can instantiate the phantom cells and perform a

second-level DRC at the transistor level.
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Design-Rule Check ( DRC )

• Dracula check:
• This is principally a check of the correctness of the library cells.

• Normally the ASIC vendor will perform this check using its own

software as a type of incoming inspection.

• The Cadence Dracula software is one de facto standard in this area,

and you will often hear reference to a Dracula deck that consists of

the Dracula code describing an ASIC vendor’s design rules.

• Sometimes ASIC vendors will give their Dracula decks to customers so

that the customers can perform the DRCs themselves.
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Design-Rule Check ( DRC )

• Layout Vs Schematic check:

• To ensure that what is about to be committed to silicon

is what is really wanted.

• An electrical schematic is extracted from the physical

layout and compared to the netlist.

• This closes a loop between the logical and physical design

processes and ensures that both are the same.

• The LVS check is not as straightforward as it may sound,

however. •288



Design-Rule Check ( DRC )
• Problems in LVS check:

• The first problem is transistor-level netlist for a large ASIC forms an

enormous graph.

• LVS software essentially has to match this graph against a reference

graph that describes the design.

• Ensuring that every node corresponds exactly to a corresponding

element in the schematic (or HDL code) is a very difficult task.

• The first step is normally to match certain key nodes (such as the

power supplies, inputs, and outputs), but the process can very quickly

become bogged down in the thousands of mismatch errors that are

inevitably generated initially.
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Design-Rule Check ( DRC )

• Problems in LVS check:

• The second problem with an LVS check is creating a true reference.

• The starting point may be HDL code or a schematic.

• Logic synthesis, test insertion, clock-tree synthesis, logical-to-physical

pad mapping, and several other design steps each modify the

netlist.

• The reference netlist may not be what we wish to fabricate.

• In this case designers increasingly resort to formal verification that

extracts a Boolean description of the function of the layout and

compare that to a known good HDL description.
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Thank you
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