Special lecture on Fiber Optics

Dr.R.Vasuki Associate Professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015

FIBER OPTICS

- Fiber optics deals with the emission, transmission & detection of light waves using optical fibers.
- Principle: Total Internal Reflection
- The refractive index, n = sin i/sin r = c/v

- Fiber is structured with materials of varying n.(n core > n cladding)
- Fiber acts as a cylindrical dielectric(Silica) wave guide.
- Light entering the fiber total internal reflection & comes out through the other end with min(zero) energy loss.

Total Internal Reflection

Important Parameters

- Acceptance angle: The angle with which the incident ray from the source is launched into the fiber so as to produce total internal reflection.
- Numerical aperture: It is the measure of the amount of light rays that can be accepted by the fiber. NA is represented in terms of n₁ & n₂.(n of core & cladding)
- Relation connecting AA & NA sin(ϕ_A) = NA = $\sqrt{(n_1^2 - n_2^2)}$

Basic components of an optical fiber

- 1. Core
- 2. Cladding
- 3. Primary coating
- 4. Buffer jacket
- 5. Strength member
- 6. Outer jacket
- 7. Filler material

- 1&2. Core & cladding:
 - Silica/silicates/ ultra pure glass rods(preforms)
 - \circ n=1.458 & can be varied by changing dopant concentration
 - $^\circ~$ GeO_2,P_2O_5 to increase n & B_2O_3 to decrease n
 - Toughness & durability are important
- 3. Primary coating:
 - A thin polymer coat over cladding by dipping or spraying technique
 - Gives additional strength to fiber & prevents chemical attack
 - KYNAR –Vinylidene Fluoride Polymer is used
- 4. Buffer Jacket:
 - To avoid micro bends(to reduce bending stress)
 - Designed based on indoor or out door applications

- 5. Strength member:
 - To provide flexibility
 - To avoid elongation/contraction of fibers
 - Aromatic polymers, Nylon, Glass fibers
- 6. Outer jacket:
 - To give productive outer layer
 - To increase mechanical strength of fibers
 - To provide water resistance effects
 - Poly ethylene, Polyurethane
- 7.Filler materials
 - To give stiffness & to provide moisture resistance
 - Specially formulated Silicone Rubber

- 6 Copper or Aluminium tube
- 7 Petroleum jelly
- **8 Optical fibers**

Color coding of Premises Fiber Cable

Fiber Type / Class	Diameter (µm)	Jacket Color
Multimode 1a	50/125	Orange
Multimode 1a	62.5/125	Slate
Multimode 1a	85/125	Blue
Multimode 1a	100/140	Green
Singlemode IVa	All	Yellow
Singlemode IVb	All	Red

(a) Step-index multimode fiber

Simple coupling; large modal dispersion

Cladding

Typical diameters and refractive indices

Core/cladding diameter	62.5/125, 100/140, , 1000/1200 μι	
Core index	1.45	
Index difference	1 % – 2 %	

(b) Parabolically-graded-index multimode fiber

Simple coupling; difficult fabrication; low or zero modal dispersion

Core/cladding diameter Core index at center Index difference 50/125, 62.5/125, 85/125 1.45 1 % – 2 % in graded index profile

FIBER OPTIC COMMUNICATION

 In the field of communication to transmit Voice signals(audio) Picture signals(video) Data signals(digital) from one place to another fibers can be used.

- Tried by John Tyndall in 1870 & practiced from 1927
- The information carrying capacity is ∝ to γ of light used. Cu wire: 48 independent signals Fiber : 15,000 or more simultaneously
- Principle: Total internal reflection

Advantages of fiber optic communication

- 1. Wider bandwidth
- 2. Low transmission loss
- 3. Electrical isolation
- 4. Immunity to cross talk

- 5. No electro magnetic interference
- 6. Signal security
- 7. Small size & lesser weight
- 8. Flexibility& ruggedness
- 9. System reliability
- 10. Low cost

FIBER OPTIC COMMUNICATION

Applications of fiber optic communication

- Best communication devices-larger bandwidth
- Defence communications-signal security
- Digital data transfer- huge data transfer
- Safety devices/Alarms- immunity to cross talk & electrical isolation
- Electronic instrumentation/automated instruments- reliability

Applications of fiber optic communication

Fiber Optic Sensors:

Intensity modulated sensors-variation of light intensity Phase sensors-phase variations in signal Diffraction grating sensor- changes in diffraction pattern Pressure & displacement sensors Presence sensors

Fiber Optic Temperature Sensor Using Fiber Deformation

Fiber Optic Temperature Sensor Using Phase Interference

Displacement Sensor

Thank You

