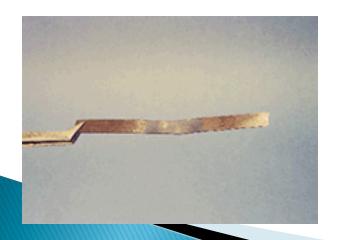
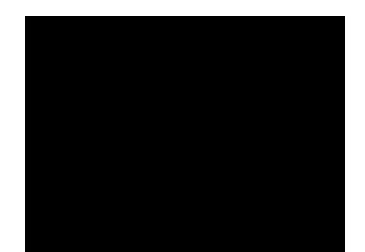

Shape Memory alloys


Shape Memory Alloys


- A shape-memory alloy is an alloy that "remembers" its original shape
- SMA, smart metal, memory metal, memory alloy, muscle wire, smart alloy
- An alloy after deformation returns to its pre-deformed shape when heated.
- An alloy that undergoes large strain & capable of recovering the initial configuration
- At the end of deformation process spontaneously or by heating.

SMA demonstration

SMA-HISTORY

- 1932 A. Ölander discovered the pseudoelastic properties of Au-Cd alloy.
- 1949 Memory effect of Au-Cd reported by Kurdjumov & Kandros.
- 1967 At Naval Ordance Laboratory, Beuhler discovers shape memory effect in nickel titanium alloy, Nitinol, which proved to be a major breakthrough in the field of shape memory alloys.
- 1970-1980 First reports of nickel-titanium implants were used in medical applications.
- Mid-1990s Memory metals start to become widespread in medicine and soon move to other applications.

Manufacturing of SMA

- SMAs are typically made by casting, using vacuum arc melting or induction melting.
- These special techniques help to keep impurities in the alloy to a minimum and ensure the well mixing of the metals.
- The ingot is then hot rolled into longer sections and then drawn into wire.
- The way in which the alloys are "trained" depends on the properties wanted.
- The "training" dictates the shape that the alloy will remember when it is heated.
- This occurs by heating the alloy so that the dislocations re-order into stable positions, but not so hot that the material recrystallizes.
- They are heated to between 400 °C and 500 °C for 30 minutes, shaped while hot, and then are cooled rapidly by quenching in water or by cooling with air.
- Shape-memory polymers have also been developed, and became commercially available in the late 1990s

SMA Properties

- The yield strength is lesser than conventional steel, but some SMAs have a higher yield strength than plastic or aluminum
- > The yield stress for Ni Ti can reach 500 MPa.
- Exhibit the super elastic properties
- High level of recoverable plastic strain can be induced.
- The maximum recoverable strain SMAs can hold without permanent damage is up to 8 % for some alloys. (For conventional steels it is only 0.5 % only)
- The cost of the metals are high & therefore effective processing is required
- The processing is difficult and expensive to implement SMAs into a design.

SMA video- MIT

SMA examples

- Ag–Cd 44/49 wt.% Cd Au-Cd 46.5/50 at.% Cd Cu-Sn approx. 15 at% Sn Cu–Zn 38.5/41.5 wt.% Zn • Cu-Zn-X (X = Si, Al, Sn) ▶ Fe-Pt approx. 25 at.% Pt Mn–Cu 5/35 at% Cu Fe-Mn-Si Co-Ni-Al Co-Ni-Ga Ni-Fe-Ga Ti–Nb Ni–Ti approx. 55–60 wt% Ni Ni−Ti−Hf Ni-Ti-Pd Ni-Mn-Ga
 - Cu-Al-Ni 14/14.5 wt% Al and 3/4.5 wt% Ni

Wt % **Extensive properties** Actuator applications At% Intensive properties **Energy applications** Ex: 2 metals A,B form an alloy Wt % of A = $m_A/(m_A + m_B)$ Wt % of B = $m_R / (m_A + m_R)$ at % of A = $N_A / (N_A + N_R)$ at % of B = $N_R / (N_A + N_R)$

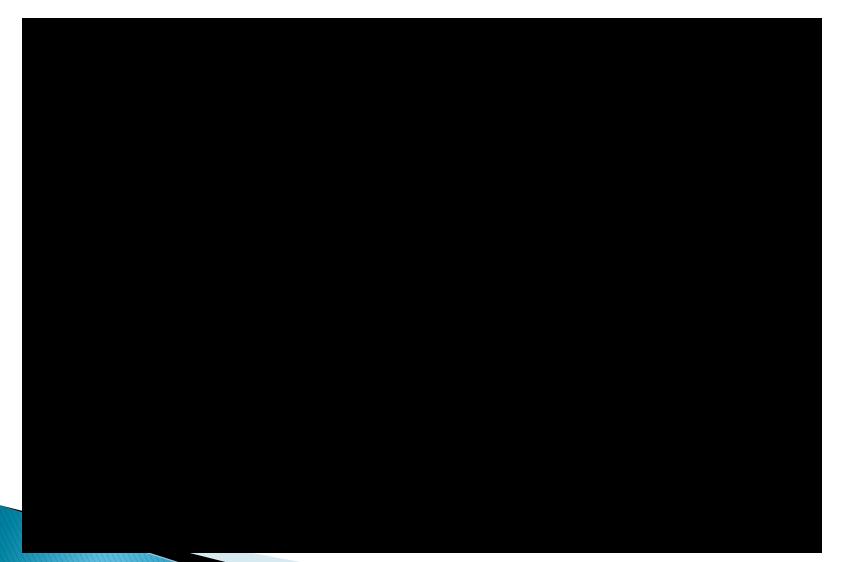
SMA- NiTiNOL (SE508 Wire)

PHYSICAL PROPERTIES

Melting Point: Density: Electrical Resistivity: Modulus of Elasticity: Coefficient of Thermal Expansion:	2390°F 0.234 lb/in ³ 32 μohm-in 6-11 x 10 ⁶ psi 6.1 x 10 ⁻⁶ /°F	1310°C 6.5 g/cm ³ 82 μohm-cm 41-75 x 10 ³ MPa 11 x 10 ⁻⁶ /°C
MECHANICAL PROPERTIES		
Ultimate Tensile Strength (UTS): Total Elongation (min):	160-200 x 10 ³ psi 10%	1100-1150 MPa 10%
SUPERELASTIC PROPERTIES		
Loading Plateau Stress @ 3%		
strain (min):	65 x 10 ³ psi	450 MPa
Permanent Set (after 6% strain) (max):	0.2%	0.2%
Transformation Temperature (A_f) :	41 to 64° F	5 to 18° C


COMPOSITION (Meets ASTM F2063 requirements)

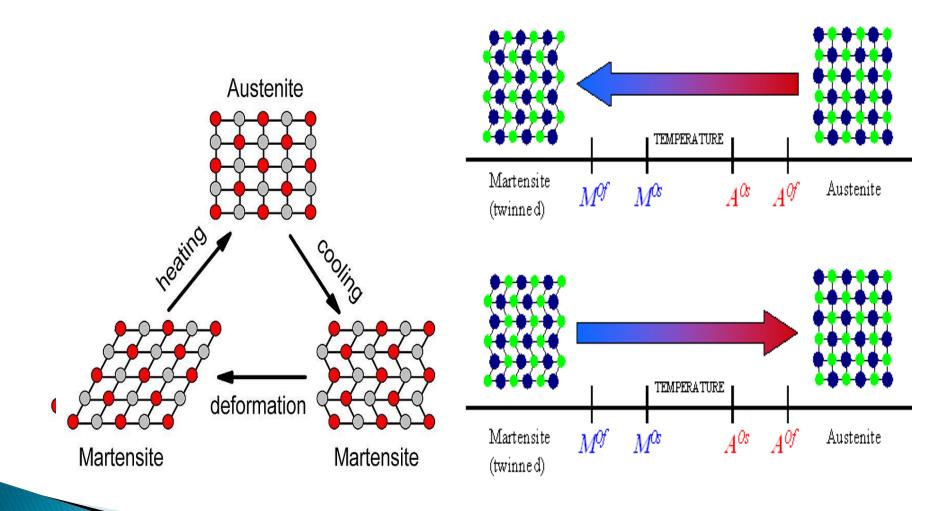
Nickel (nominal):	55.8 wt.%
Titanium:	Balance
Oxygen (max):	0.05 wt.%
Carbon (max):	0.02 wt.%


Ferris rotation using NiTi

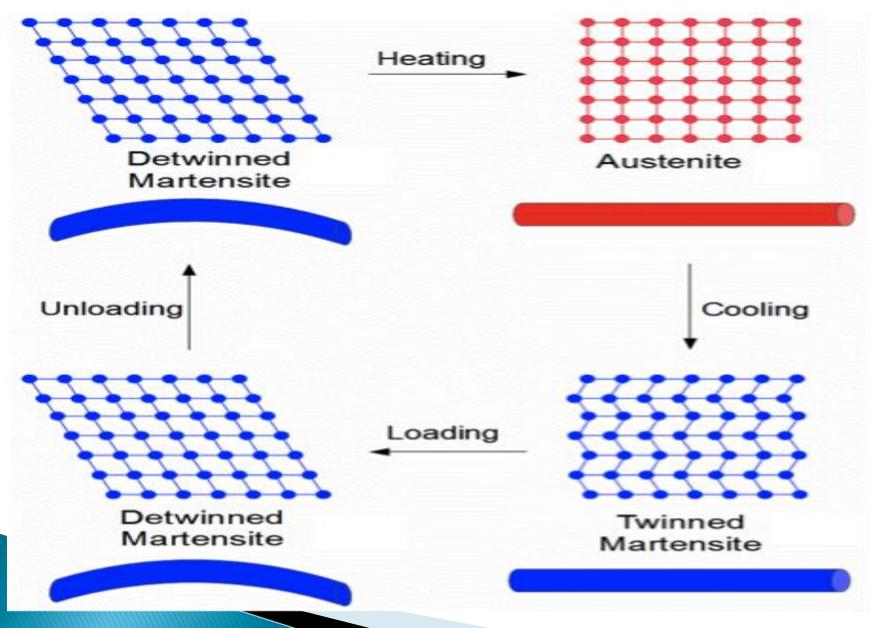
NiTiNol metallic muscles wire

Two phases of SMA

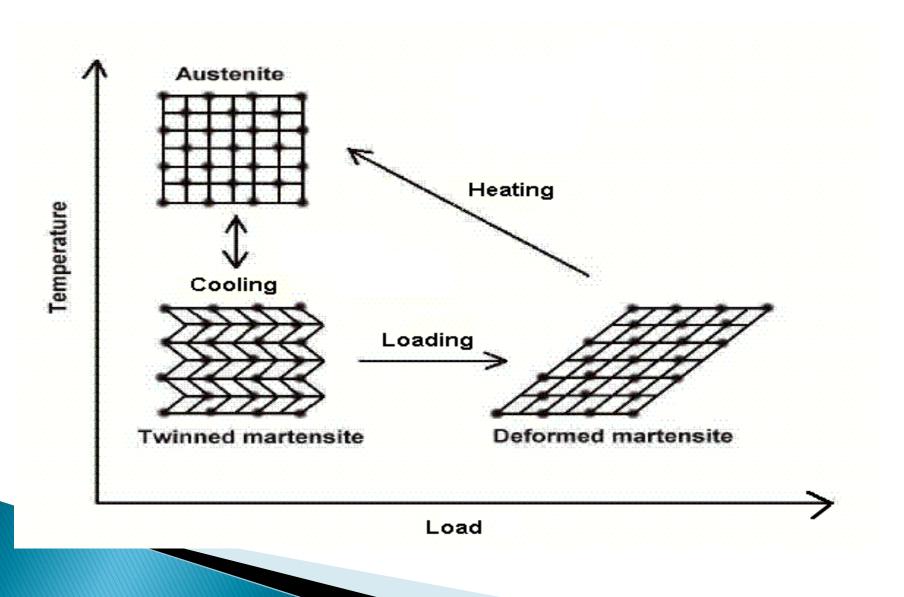
Austenite

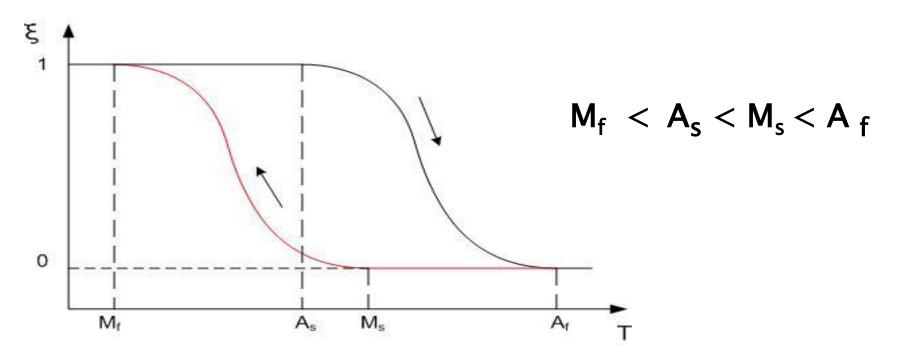

- High Temperature state
- Hard, firm
- Symmetric
- Inelastic
- Resembles titanium
- Simple FCC structure
- Thermal/Mechanical deformation

 Low temperature state


Martensite

- Soft
- Less Symmetric
- Elastic
- Complex structure
- Twinned& un twinned
- Heat/stress induced transformation


SHAPE MEMORY EFFECT

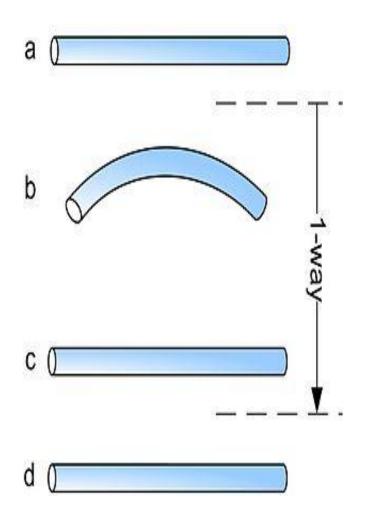

Austenite & Martensite transformations

SMA phase transformations

Temperature – Transformations

 M_s : T at which austenite starts to transform to martensite upon cooling M_f : T at which transformation of austenite to martensite is complete upon cooling A_s : T at which martensite begins to transform to austenite upon heating T at which transformation of martensite to austenite is complete upon heating

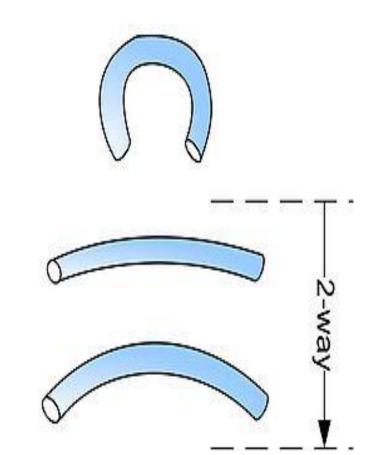
Advantages of SMA


- High strength
- Super elasticity
- Fatigue resistance
- Wear resistance
- Easy fabrication
- High power/weight ratio
- Light weight
- Bio compatibility
- Shape memory property

Disadvantages of SMA

- Initial investment
- Sensitive fabrication
- Residual stress
- Lower max freq of actuators
- Non-linear actuation force

One Way Shape Memory Effect


- When a SMA is in its cold state (below As), the metal can be bent or stretched and will hold this shape until heated above the transition T.
- Upon heating, the shape changes to its original.
- When the metal cools again, it will remain in the hot shape until deformed again.
- In this case, cooling from high Tdoes not cause macroscopic shape change.

Two Way Shape Memory Effect

- The material remembers two shapes: one at high T & the other at low T.
- Shows shape memory effect during b both cooling and heating.
- The metal can be trained to leave some reminders of the deformed low temp condition in the high temperature phases.
- Above a certain T, the metal loses the 2 way memory effect. This is
 Iled "amnesia"

C

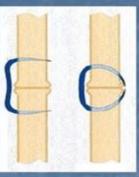
d

APPLICATIONS of SMAs

APPLICATIONS

- Medicine
- Optometry
- Engines
- Aerospace
- Robotics
- Automotive
- Pipings
- Civil stuctures
- Water spinkers
- Textile

APPLICATIONS of SMAS


Applications of Shape Memory Alloys (SMAs)

F-14

Aeronautic coupling & Solid-state actuator

Orthodontic archwire

Endodontic Self-expanding SMA bone SMA tool stent staple

Robotic application

SMA damper

Eyeglass frame

& MEMS

A

SMA art application

CIVIL ENGINEERING APPLICATIONS

Aerospace applications

Automotive applications

Transport

Robotics

Communication

Medicine