
SUMMARY OF THE PROJECT
1. Proposal (Title) : Scheduling algorithm to minimize the worst case execution time of

 Safety Critical applications on Multicore processors
2. Broad Area : Computer Science and Engineering
3. Duration of the grant: 3 years
4. Principal Investigator:

Name : Dr.Mrs.P.Chitra Designation : Assistant Professor
Qualification : Ph.D Department : CSE Date of Birth : 04.09.1974

5. PI’s address: Dr.Mrs.P.Chitra,
Assistant Professor, CSE Department,
Thiagarajar College of Engineering, Madurai. Pin code - 625 015
Phone: 04522482240, Fax:04522483427
Email : pccse@tce.edu

5. UGC MRP details
File No : F.No.42-130/2013(SR),26.8.2014
Date : 15/09/2014
Amount Released : Rs.4,93,500/-
Amount Spent : Rs.4, 98,466/-

6. Objectives of the proposal:
 To investigate and develop a method for measuring the worst case execution time of safety

critical application on Multicore processor.

 To schedule the task on the multicore processor to minimize the worst case execution time.
 7. Abstract of the research:

Multi-core computer architectures are on the forefront in consumer electronics and adaptation in
safety-critical applications such as avionics could be beneficial due to their potential increased
performance. There are challenges to deploy cutting edge multi-core architectures for safety-critical
applications. New computing architectures are more integrated and optimized for average cases. One the
other side, safety critical applications need to be designed for the worst case. For example, the impact of
integrating critical applications is not fully understood yet, especially with respect to execution times of
critical paths. Hence, there is a need for measuring the WCET to calculate the execution times of real time

applications. There are variations that exist in the Microarchitectures of the new multicore processor and
it is necessary to build a time-predictable system for critical applications on these architectures.

 Network on Chip (NoC) was derived from multicore platform offers better communication
between the processing elements such as Core, Cache, internal GPU,APU’s, internal RAM module etc.
The communication path plays a major role in estimating the execution time of the applications. Hence,
the research concluded by comparing the WCET performance on 2d and 3D space on NoC.

Paper publications:
Paper title: Evaluation of Worst Case Execution Time of Tasks on Multi-core Processor
Published in: Advances in Intelligent Systems and Computing, Springer, Vol. 325, 2015

Abstract :
In hard real time systems it is required to compute the Worst Case Execution Time (WCET) of

each task that has become a difficult problem. The increasing complexity of modern processor
architectures makes achieving this objective more and more challenging. To measure the worst case
execution time of a task, it is necessary to develop a framework on multi-core platform considering the
nature of a program and shared resources. Path Analysis, one of the static based approaches is used. It is
important to take into account the analysis of paths as it calculates the execution time of each basic block
with respect to the cache behaviour. The WCET estimates of this analysis are performed using
simplescalar simulator.

The overall design of the system for estimating the WCET is simplified and shown in Figure2.
Given the task i.e., program, it is complied to get an assembly code and executable code. The executable
code is disassembled using disassembler program to form an intermediate code. This intermediate code is
used for representation of basic blocks. To view the process of the system Control Flow Graphs are
generated. Finally, to calculate the WCET, the parameters used are basic blocks, loops, hits and misses. It
should be noted that the whole process depends on the basic blocks which is represented using
intermediate codes.In essence the method works in eight steps:

1. The task is given as an input. The input is in the form of C program.
2. The given C program is converted to an assembly code, object code and an executable code.

These conversions are done by the SimpleScalar GCC compiler.

3. The executable code is converted to an intermediate code by using disassembler program.
4. Combining intermediate code and assembly code forms the basic blocks of a given tasks.
5. When the conversions made from the executable code to an intermediate code a TCFG is

generated. Trace Control Flow Graph (TCFG) generated gives the information about the
connection between the nodes.

6. With the help of TCFG, Control Flow Graphs can be formed.
7. The basic blocks obtained are analyzed using static based approach.
8. The execution time of the each basic blocks are calculated using MIPS instructions.

After getting above work done WCET calculated using the help of equation (1),(2).

Figure 1: Overall Design of the System for WCET analysis

A. Measuring Execution Times
There are several approaches to measuring execution time, each has its own advantages and

disadvantages. The two widely known approaches are using clock cycle counters and using timers.
A clock cycle counter counts clock cycles from the CPU cores. The advantages are that this

approach is exact; time can be measured with the help of fine granularity. It does not disturb the execution
of software in any way.

Timers can be used in many systems. This can be implemented in different ways: fully dependent

in hardware or combination of software.
Real-time clocks (RTCs) are implemented with the hardware solutions, and is accessed similar as

clock cycle counters, with the difference of having a lower resolution. In this paper, clock cycle counters
are used.

B. Measuring Basic Blocks
To measure the total time taken for the execution of basic blocks, first it is necessary to find the

cost of each basic block using equation 1. The costs of basic blocks are found using cycles. The cycles are
calculated using MIPS instructions.

BTi = nhiti + nmissi + (Total number of iterations in loop * BCi) (1)
Where i = 1,2,...........n, number of basic blocks
BTi total time takes for each block to execute
BCi Block Cost
nhiti number of hits occurred on ith basic
block - number of misses occurred on ith basic
C. Calculating WCET
To estimate Worst-Case Execution Time, sum of execution times of all the basic blocks (BT) is

computed. To calculate the worst-case execution time the formula used is given in equation 2.




 n

i
iBTWCET

1
 (2)

The sum of all the execution time of all basic blocks is calculated by considering the iterations (if
any), block cost, cache hits and misses.

 To estimate the worst-case execution time of a task, static based approach is used. This
approach helps to analyze the behaviour of cache and path. Simplescalar simulator is used to evaluate the
precision of the analysis. Experimental results indicate that the path analysis can be used to obtain the
worst case execution of a task, and thus it is preferable for real-time applications.
Paper title: Cube NoC based on Hybrid Topology
Publisher : Australian Journal of Basic and Applied Sciences, Vol. 8(15), pp. 216-225, 2014

A number of research studies have demonstrated the feasibility and advantages of Network-on-
Chip (NoC) over traditional bus-based architectures such as multicore SoC. The nature of communication
bottleneck come on the routing of the signals on the BUS. BUS type communication has a limitation
such as single signal flow, inteference etc. So we have developed a model on NoC, NoC replaces buses
with interconnect(packet transfer) by which the communication hazard was overcome and the WCET
value was reduced.
Rolling into modern processor technology, developers are increasing the number of transistors
exponentially. NoC is a proficient on-chip communication platform for SoC architecture; partitioning a
die into segments and stacking them in 3D fashion significantly reduce latency and energy consumption.
A new Cube Network-on-Chip (NoC) based architecture is proposed, which takes the advantage of this
exponential increase. In this model, the number of processing elements can be increased exponentially,
while reducing the space complexity. WCET estimated to meet the need of realtime process.

Why to Cube Model

Model offers regular structure and non congested floorplaning. For enterprise processing solution,
increasing the processing elements linearly will not make much difference. This approach allows the
exponential increase of Processing Elements (PEs) and has an effective routing strategy and offers
deadlock aware minimal hop network communication, failsafe and thermal aware execution. This type of
failsafe link and better routing minimize the WCET and offers a realtime task output.

The proposed cube based NoC model offers a regular structure and non-congested floor planning. For
enterprise processing solution, increasing the processing elements linearly will not make much difference.
This approach allows the exponential increase of Processing Elements (PEs) and has an effective routing
strategy and offers deadlock aware minimal hop network communication, failsafe and thermal aware
execution.
In traditional NoC architecture, the router will be a separate element and attached to a switch in PEs. In
the proposed cube model, each PE is equipped with switching and routing logic. The processing element
with the switching and routing logic is shown in Figure 2. The router is placed within the processing
element itself. In case of a 2D NoC layer, the PE can be implemented on one of the physical planes of the
system, consisting of n*n PEs in each layer. For the 3-D system, n such layers are stacked and hence the
total number of PEs will be n*(n*n) which is n^3.
The router contains control logic to monitor the power and thermal impact, it also maintain an access
control list which include the neighbor node’s power and thermal details. As flit traffic is forwarded
across the router the consumption of power is high and this further increases the thermal state of
processing element that is the temperature. So to avoid the bad impact of traffic on the nodes the routing
logic should be consistent over all traffic conditions.
In the Cube based NoC every element is arranged in a 3D matrix form and every elements of the
processing blocks are designed and developed in the form of cubes. Fig. 2 shows the processing element
cube and Fig. 3 shows the proposed 3D cube NoC architecture model. This way the final architecture of
the network will have cube properties. The structure of NoC will be n*n*n matrix model, which grows in
order of 3. Such cube based floor planning offers average equal length of communication path and avoids
congested wiring.

The router has control logic to monitor the power and thermal impact, it also maintain a access
control list which include the neighbor node power and thermal details. As flit traffic across the router
increases the usage of power and subside it increase the thermal of processing element. So to avoid the
bad impact of traffic the routing logic should be consistent over all sort of nature. Cube model offers a
intelligent routing logic which helps to act according to the nature of traffic and failure.
Floor Planning

In Cube based NoC every element is arranged in 3D matrix form, every elements of processing
block designed and developed as cubes[Figure 2,3]. Final production of NoC offers cube properties.
Structure of NoC will be n*n*n matrix model, which grows in order of 3.

Processing Element with Router
In cube based model, router will be embedded with the processing element. Router has seven

input and output ports with selector and arbiter. This model avoid unnecessary space and wire delay as its
close to the IP of the processing Element.

Figure 2. Processing element with Router

Topology
Topology is developed for reliable flit transfer between the PEs. The proposed topology takes the

advantages of mesh with a custom topology and it tends to be a hybrid one.

Figure. 3: illustration of 3*3*3 cube model with topology

Mesh is the primary topology over the chip and there are diagonal fail safe link outer of the model .
Figure 6 shows the diagonal connection established for cube model.

The topology switching used has seven links port in each PEs(Figure 5), one to connect the IP and
the router, and six other to connect to adjacent PEs within the layer or if the router is in edge then in six,
three ports connect to its diagonal PE router port.
Routing Logic

Packet transfer can take place either within the same layer or across the layers. According to the
Figure 5 there are seven links denoted by LIP, LE, LW, LN, LS, LUP, and LDOWN. The routing
algorithm has to determine the communication is within the same layer or up/down layer.
LIP – link between the IP and the switching port.
LE, LW, LN, LS - act as the port for communicating within the layer.
LUP, LDOWN - act as the port for communicating among the layers.
LE,LW,LN,LS,LUP,LDOWN- also used to communicate with diagonal nodes
While doing the routing the WCET value was calculated and the routing decided to go through the mesh
or to the failsafe link.

XY routing is used, if the communication is within the same layer. If it’s to other layer, then the
routing logic determines the shortest failsafe link and completes the transfer considering the traffic and
thermal impact.

In moderated NoC environment due to flit traffic, power and thermal issues, router in PEs may fail to
carry on the flit transfer across network. The proposed model can operate without interruption even under
such situations. As it has diagonal link between bottom layer corner to top layer corner (Figure 6) even
their some failures in intermediate node over mesh interconnect, diagonal link act as a failsafe
communication for the model and offers many dedicated paths to proceed the operation. Let us have ‘n’
nodes in L number of layers.
In Cube model, 4 PE’s have failsafe diagonal links

L(0,0,0) - L(n,n,n) , L(0,0,n) - L(n,0,0) , L(0,n,n) - L(n,0,0) and L(0,n,0) - L(n,n,0)
Each corner PE contribute 3 diagonal links over the input and output port. Considering our 3*3*3
model(Figure 6), model exhibits 12 (4 PE*3 link) failsafe links for flit transfer.

If the local IP core at the bottom layer, wants to communicate to the IP core at the top layer, it does
not need do a multiple hop by jumping layer by layer, instead jump to the top via diagonal link and do the
needful action. For packets routed across layers, the router makes routing decision based on flit traffic
and latency on port. When a packet is to be delivered between the routers in the same layer then, the
router uses XY routing and finds the minimal hop path between them with the WCET.

If the source and destination are in the different layer, then uses the hybrid cube routing for efficient
transfer of flit. If the up/down link of the router is busy or not accessible, it will try to find an intermediate
free route with a healthy vertical link at the same layer, which has a minimal distance to the destination,
based on the routing table and the WCET. An example for the routing is given below.

3D NoC technology reduces the interconnect delays by stacking multiple layers on top of each by
providing shorter vertical interconnect. A new Cube based NoC model is proposed, that provide shorter
interconnects with hybrid topology. This also offers better scalability, with respect to processing
elements. The interconnection proposed here, offers failsafe communication through the shortest link via
optimized routing logic which helps to reduce the WCET value to negligible.

