CURRICULUM AND DETAILED SYLLABI FOR

B.E. EEE DEGREE PROGRAMME

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING (A Government Aided Autonomous Institution affiliated to Anna University) MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

VISION

Transforming the individuals into globally competent electrical engineers to fulfill the technological needs of the society.

MISSION

Establishing world class infrastructure in Electrical Engineering.

Enhancing the knowledge of the faculty in cutting edge technologies through continuous improvement programmes.

Providing well balanced curriculum in graduate, postgraduate and doctoral programmes.

Adopting innovative content delivery, assessment and continuous improvement methods to achieve desired outcomes.

Facilitating industry institution interaction in teaching & learning, consultancy and research activities to accomplish the technological needs of the society.

Encouraging the faculty and students to carry out innovative research work.

Practicing ethical standards by the faculty and students.

Motivating the students for active participation in co-curricular and extracurricular activities.

Specialization in B.E. EEE Degree Programme

- Electrical Energy Systems
- Analog & Digital Electronic Systems
- Control & Automation
- Power Electronics & Drives

Programme Educational Objectives (PEO's)

PEO1: Graduates of the programme will have successful career in chosen technical or professional fields.

PEO2: Graduates of the programme will have technical competency in solving challenging societal tasks in ethical and economical manner.

PEO3: Graduates of the programme will reveal lifelong learning and team work in their chosen profession.

Programme Outcomes (POs) for B.E. Electrical and Electronics Engineering

After the successful completion of the B.E. Electrical and Electronics Engineering degree programme, the students should be able to:

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: The problems:

- that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline.
- that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions.
- that require consideration of appropriate constraints/requirements not explicitly given in the problem statement. (like: cost, power requirement, durability, product life, etc.).
- which need to be defined (modeled) within appropriate mathematical framework.
- that often require use of modern computational concepts and tools.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering 21 activities with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PEO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1												
PEO2												
PEO3												

Programme Specific Outcomes (PSO):

After the successful completion of the B.E. Electrical and Electronics Engineering degree programme, the students will be able to:

PSO1: Design and analyze components/ systems that effectively generate, transmit, distribute and utilize electrical power.

PSO2: Design and analyze modern industrial electronic systems/components to perform analog and digital processing and control functions

PEO- Mission mapping

PEO	M1	M2	М3	M4	M5	M6	M7	M8
PEO1	1	2	2	1	2	1	1	3
PEO2	1	2	2	2	2	2	1	3
PEO3	1	2	3	2	3	2	1	3

1 – Low; 2 – Medium; 3 – Strong

Credit Distribution

S.No	Category	Credits	Credits
		(Regular)	(Lateral Entry)
Α	Foundation Courses	53-58	23-28
	Humanities and Social Science (HSS)	9 -11	6-8
	Basic Science (BS)	21	6
	Engineering Science (ES)	23 -26	11-14
В	Professional Core Courses	55	45
С	Elective Courses	24 - 48	24 - 48
	Programme specific Elective	12-24	12-24
	Programme Elective for Expanded Scope	6 – 12	6 – 12
	General Elective	3-6	3-6
	Foundation Elective	3-6	3-6
D	Project work, seminar, internship in industry or at	15	15
	Higher Learning institutions		
E	Mandatory Courses prescribed by AICTE/UGC	-	-
	(Not to be included for CGPA)		
	Minimum Credits to be earned for the award of	160	120
	the Degree	(from A to D)	(from A to D)
		and the	and the
		successful	successful
		completion of	completion of
		Mandatory	Mandatory
		Courses	Courses

- General electives are courses offered by different departments that do not have any prerequisites and could be of interest to students of any branch
- All students have to undertake co-curricular and extra-curricular activities that include activities related to NCC, NSS, Sports, Professional Societies, participation in identified activities which promote the growth of Departments and the College

THIAGARAJAR COLLEGE OF ENGINEERING, MADURAI- 625 015 (A Govt. Aided Autonomous Institution affiliated to Anna University)

CHOICE BASED CREDIT SYSTEM

Categorization of Courses

Degree: B.E. Programme: EEE Batch: 2018-19 onwards

A. FOUNDATION COURSES:

Total Credits to be earned: (53-58)

a. Humanities and Social Science (09-11)

S.No.	Course Code	Name of the Course		Number of Hours / Week		Hours /		Credit	Prerequisites (Updated)
			L	T	Р				
		THEORY							
1.	18EG140	English	2	-	-	2	Nil		
2.	18EE540	Accounting and Finance	3	-	-	3	Nil		
3.	18EE490	Project Management	3	-	-	3	Nil		
		THEORY CUM PRACTICAL							
1.	18EG460	Professional Communication	-	1	2	2	Nil		
		PRACTICALS							
1.	18EG170	English Laboratory	-	-	2	1	Nil		

b. Basic Science (21)

	_	o deletice (E1)					
S.No.	Course	Name of the Course	Num	ber o	of	Credit	Prerequisites
	Code		Ho	urs /			(Updated)
			W	'eek			,
			L	Т	Р		
		THEORY					
1.	18MA110	Engineering Calculus	3	1	-	4	Nil
2.	18PHB20	Physics	3	-	-	3	Nil
3.	18CHB30	Chemistry	3	-	-	3	Nil
4.	18MA210	Matrices and Ordinary	3	-	-	3	Nil
		Differential Equations					
5.	18EE310	Numerical methods and	3	-	-	3	Nil
		Complex variables					
6.	18EE410	Probability and Random	3	-	-	3	Nil
		processes					
		PRACTICALS					
1.	18PH180	Physics Laboratory	-	-	2	1	Nil
2.	18CH190	Chemistry Laboratory	-	-	2	1	Nil

c. Engineering Science (23-26)

S.No.	Course	Name of the Course	Number of	Credit	Prerequisites
	Code		Hours /		(Updated)
			Week		, ,

			L	Т	Р		
		THEORY					
1.	18ES150	Engineering Exploration	3	-	-	3	Nil
2.	18EE220	Materials Science for	3	-	-	3	Nil
		Electrical Engineering					
3.	18ES390	Design Thinking	1	-	2	2	Nil
4.	18ES590	System Thinking	1	-	2	2	Nil
5.	18EE620	Data Structures	3	-	-	3	18EE360
6.	18XXEX0	Elective				3	Nil
		THEORY CUM					
		PRACTICAL					
1.	18ME160	Engineering Graphics	3	-	2	4	Nil
2.	18EE360	C and C++ Programming	2	-	2	3	Nil
		PRACTICALS					
1.	18EE280	Electrical Workshop	-	-	2	1_	Nil
2.	18ES290	Lateral Thinking	-	-	2	1	Nil

B. PROFESSIONAL CORE COURSES Credits to be earned: (55)

CDIO	Course	Name of the Course	Νι	ımk	er	Cred	Prerequisit
Curricular	Code		of	Ho	urs	it	es
compone			/ /	Ne	ek		(Updated)
nt			L	Т	Р	1	, <u>, , , , , , , , , , , , , , , , , , </u>
		THEORY					
1.2.1	18EE230	Electric Circuit Analysis	3	-	-	3	Nil
1.2.2	18EE240	Electromagnetic Fields	2	1	-	3	Nil
1.2.3	18EE250	Electronic devices and circuits	3	-	-	3	Nil
1.2.4	18EE320	DC Machines and	3	-	-	3	Nil
		Transformers					
1.2.5	18EE330	Linear Integrated Circuits	3	-	-	3	Nil
1.2.6	18EE340	Digital Systems	2	1	-	3	Nil
1.2.7	18EE350	Signals and Systems	3	-	-	3	Nil
1.2.8	18EE420	AC Machines	3	-	-	3	Nil
1.2.9	18EE430	Measurements and	3	-	-	3	Nil
		Instrumentation					
1.2.10	18EE440	Control Systems	2	1	-	3	Nil
1.2.11	18EE510	Generation, Transmission and	2	1	-	3	18EE320
		Distribution					18EE420
1.2.12	18EE520	Microcontrollers	3	-	-	3	18EE340
1.2.13	18EE530	Power Electronics	3	-	-	3	Nil
1.2.14	18EE610	Power System Analysis	3	-	-	3	18EE420
1.2.15	18EE710	Electric Power Utilization	3	-	-	3	18EE320
							18EE420
		PRACTICALS					
1.2.3	18EE270	Electronic Devices and Circuits	-	-	2	1	Nil
		Lab					
1.2.4	18EE370	DC Machines and	-	-	2	1	Nil
		Transformers Lab					
1.2.5 &	18EE380	Integrated Circuits Lab	-	-	2	1	Nil

1.2.6							
1.2.9	18EE470	Measurement &	-	-	2	1	Nil
		Instrumentation Lab					
1.2.8	18EE480	AC Machines Lab	-	-	2	1	Nil
1.2.12	18EE570	Microcontrollers Lab	-	-	2	1	Nil
1.2.10	18EE580	Control & Automation Lab	-	-	2	1	Nil
1.2.11	18EE670	Energy Management System	-	-	2	1	Nil
		Laboratory					
1.2.13 &	18EE680	Power Electronics and Drives	-	-	2	1	Nil
14		Lab					
1.2.15	18EE770	Electric Power Systems	-	-	2	1	Nil
		Laboratory					

C. ELECTIVE COURSES:

Credits to be earned: (24-48)

a. Programme Specific Electives

Credits to be earned:12-24

S.No.	Course	Name of the Course		ımb		Credit	Prerequisite
	code		of	Ηοι	ırs		S
			/ V	Vee	k		(Updated)
			L	Т	Р		
		ELECTRICAL ENERGY SYSTEMS					
	THEORY						
1	18EEPE0	Power System Operation and Control	3	-	-	3	18EE440
2	18EEPF0	Electrical Machine Design	2	1	-	3	18EE320 18EE420
3	18EEPG0	Switchgear and Protection	3	-	-	3	Nil
4	18EEPT0	Wind and Solar Technology	3	-	-	3	Nil
5	18EERC0	Principles of Energy Conservation	3	-	-	3	Nil
6	18EERD0	Operation and Maintenance of Electrical equipment	3	-	-	3	18EE320 18EE420 18EE510
		ANALOG AND DIGITAL ELECTRONIC SYSTEMS					
	THEORY						
7	18EEPH0	VLSI Design	3	-	-	3	18EE340
8	18EEPQ0	Automotive Electronics	3	-	-	3	18EE340 18EE430
9	18EERG0	Industrial Electrical and Electronics	3	-	-	3	Nil
10	18EERH0	Testing & Certification of Automotive Electrical and Electronic Systems	3	-	-	3	18EEPQ0
11	18EERL0	Manufacturing of Automotive Electrical and Electronic Parts	3	-	-	3	Nil
	THEORY CUM PRACTIC AL						
12	18EEPJ0	FPGA based System Design	2	-	2	3	18EE340
13	18EEPK0	Digital Signal Processing	2	-	2	3	18EE350

14	18EEPN0	Embedded Systems Design	2	_	2	3	18EE520
			_		_		
		CONTROL AND AUTOMATION					
	THEORY						
15	18EEPA0	Control System Design	3	-	-	3	18EE350 18EE440
16	18EEPR0	Automotive Fundamentals and Manufacturing	3	ı	-	3	Nil
17	18EERF0	Industrial instrumentation	3	-	-	3	Nil
	THEORY CUM PRACTIC AL						
18	18EEPS0	Soft Computing	2	-	2	3	Nil
		POWER ELECTRONICS AND DRIVES					
19	18EEPU0	Drives and Control	3	-	-	3	18EE320 18EE420 18EE530
20	18EEPV0	FACTS and Custom Power Devices	3	-	-	3	18EE510 18EE530
21	18EEPY0	Power Quality	3	-	-	3	18EE510 18EE530
22	18EERA0	Power Electronics for Renewable Energy Systems	3	-	-	3	18EE530

b. Programme Specific Elective for Expanded Scope

		·					
S.No.	Course	Name of the Course	Νι	ımb	er	Credit	
	Code		of	Ηοι	urs		
			/١	Vе	ek		
			L	LTP			
ELECT	RICAL ENER	GY SYSTEMS		•			
	THEORY						
1	18EEPC0	Design of Electrical Installations	3	_	_	3	18EE320
		3					18EE420
2	18EEPD0	Smart Grid	3	-	-	3	Nil
3	18EE1E0	Thermal power plant instrumentation &	1	-	-	1	Nil
		control					
		ANALOG AND DIGITAL					
		ELECTRONIC SYSTEMS					
	THEORY						
4	18EEPL0	Biomedical Instrumentation	3	-	-	3	Nil
5	18EEPM0	Real Time Operating System	3	-	-	3	18EE520
		CONTROL AND AUTOMATION					
	THEORY						
6	18EEPB0	Operation Research	3	-	-	3	Nil
7	18EEPP0	Robotics	3	-	-	3	18EE440
8	18EERJ0	Quality Engineering	3	-	-	3	Nil

Credits to be earned: 06-12

9	18EERK0	Reliability Engineering	3	-	-	3	Nil
10	18EE1D0	Industrial control systems	1	-	-	1	Nil
		POWER ELECTRONICS AND					
		DRIVES					
		THEORY					
11	18EEPW0	HVDC Transmission	3	-	-	3	18EE510
							18EE530
12	18EEPZ0	Special Machines and Drives	3	-	-	3	18EE320
							18EE420
13	18EE1A0	Design of Power Supplies	1	-	ı	1	18EE330
14	18EE1B0	Lead Acid Battery Technology	1	-	-	1	Nil
15	18EE1C0	Introduction to power electronics	1	-	-	1	18EE530
		system for XEVS					
		THEORY CUM PRACTICAL					
16	18EERB0	Simulation of Power Electronic	2	-	2	3	18EE530
		Systems					

c. General Elective

Credits to be earned: 03-06

d. Electives from foundation courses- HSS, BS, ES

Credits to be earned: 03-06

D. Project

Credits to be earned: 15

S.No	Course	Course Name	Credits
	code		
1	18ES690	Engineering Design Project	3
2	18ES790	Capstone Design Project	3
3	18EE810	Project	9

E. Mandatory Courses (Not included for CGPA)

Environment Science, Induction Programme, Indian Constitution, Essence of Indian Tradition knowledge(as per UGC guideline)

Minimum credits to be earned for the award of the degree =160 (From A to D) for Regular students and 120 (From A to D) for Lateral entry students.

SCHEDULING OF COURSES (B.E.EEE. Programme) – 2018-19 admitted Batch

	Theory			LING OF GOOKS		ТСР	Practical			Mandatory	
Semester	,			4	_					Audit Courses	Credits
I	1 18MA110 Engineering Calculus (4)	18PHB20 Physics (3)	3 18CHB30 Chemistry (3)	4 18EG140 English (2)	18ES150 Engineering Exploration (3)	18ME160 Engineering Graphics (4)	7 18EG170 English Laboratory (1)	8 18PH180 Physics Laboratory (1)	9 18CH190 Chemistry Laboratory (1)	<u>10</u> -	22
II	18MA210 Matrices and Ordinary Differential Equations (3)	18EE220 Materials Science for Electrical Engineering (3)	18EE230 (3) Electric Circuit Analysis	18EE240 Electromagnetic Fields (3)	18EE250 Electronic Devices and Circuits (3)		18EE270 (1) Electronic Devices and Circuits Lab	18EE280 Electrical Workshop (1)	18ES290 Lateral Thinking (1)	18CHAA0 Environmental Science	18
Ш	18EE310 Numerical methods and Complex variables (3)	18EE320 (3) DC machines and Transformers	18EE330 (3) Linear Integrated circuits	18EE340 (3) Digital Systems	18EE350(3) Signals and Systems	18EE360 (3) C and C++ Programming	18EE370 (1) DC Machines and Transformers Lab	18EE380 (1) Integrated Circuits Lab	18ES390 Design Thinking (2)	-	22
IV	18EE410 Probability and Random processes (3)	18EE420 (3) AC Machines	18EE430 (3) Measurements and Instrumentation	18EE440 (3) Control Systems	FE (3 credit Elective course)	18EG460 Professional Communication (2)	18EE470 Measurements and Instrumentation Lab (1)	18EE480 (1) AC Machines Lab	18EE490 Project Management (3)	18CHAB0 Constitution of India	22
V	18EE510 (3) Generation, Transmission and Distribution	18EE520 (3) Micro Controllers	18EE530 (3) Power Electronics	18EE540 Accounting and Finance (3)	GE (3 credit Elective course)	PE (3 credit Elective course)	18EE570 (1) Micro Controllers Lab	18EE580 (1) Control & Automation Lab-	18ES590 System Thinking (2)	18CHAC0 Essence of Indian Knowledge	22
VI	18EE610 (3) Power System Analysis	18EE620 (3) Data Structures	PE (3 credit Elective course)	PE/ FE (3 credit Elective course)	Engineering Sciences Elective (3)		18EE670 (1) Energy Management System Laboratory	18EE680 (1) Power Electronics & Drives Lab	18ES690 Engineering Design Project (3)	-	20
VII	18EE710 (3) Electric Power Utilization	PE (3 credit Elective course)	PE (3 credit Elective course)	PE/ GE (3 credit Elective course)	PE (3 credit Elective course)	-	18EE770 (1) Electric Power Systems Laboratory	-	18ES790 Capstone Design Project (3)	-	19
VIII	PE (3 credit Elective course)	PE/ FE (3 credit Elective course)	-	-	-	-	-	-	18EE810 Project (9)	-	15

Total Credits: 160

Colour code	Category
	Foundation Courses
	Humanities and Social Science (HSS)
	Basic Science (BS)
	Engineering Science (ES)
	Professional Core Courses
	Electrical Energy System Courses
	Analog & Digital Electronic System Courses
	Control & Automation Courses
	Power Electronics & Drives Courses
	Elective Courses
	Programme specific Elective / Programme Elective for Expanded Scope (PE)
	General Elective (GE)
	Foundation Elective (FE)
	Project work
	Mandatory Courses

CURRICULUM AND DETAILED SYLLABI

FOR

B.E. / B.Tech. DEGREE PROGRAMME

FIRST SEMESTER

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING

(A Government Aided ISO 9001:2008 certified Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. / B.Tech. Degree Programmes

COURSES OF STUDY

(For the candidates admitted from 2018-19 onwards)

FIRST SEMESTER

Course	Name of the Course	Category	No	o. of H	credits	
Code				/We		
			L	T	Р	
THEORY						
18MA110	Engineering Calculus	BS	3	1	-	4
18PHA20/	Physics	BS	3	-	-	3
18PHB20/						
18PHC20						
18CHA30/	Chemistry	BS	3	-	-	3
18CHB30/						
18CHC30						
18EG140	English	HSS	2	-	-	2
18ES150	Engineering Exploration	ES	3	-	-	3
THEORY C	UM PRACTICAL					
18ME160	Engineering Graphics	ES	3	-	2	4
PRACTICA	L					
18EG170	English Laboratory	HSS		-	- 2	1
18PH180	Physics Laboratory	BS	-	-	2	1
18CH190	Chemistry Laboratory	BS	-	-	2	1
	Total		17	1	8	22

BS : Basic Science

HSS : Humanities and Social Science

ES : Engineering Science

L : Lecture
T : Tutorial
P : Practical

Note:

1 Hour Lecture is equivalent to 1 credit

1 Hour Tutorial is equivalent to 1 credit

2 Hours Practical is equivalent to 1 credit

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. / B.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2018-19 onwards)

FIRST SEMESTER

S.No.	Course Code	Name of the Course	Duration of		Marks		Minimum for Pa	
	Oddo	Oddios	Terminal Exam. in Hrs.	Contin uous Asses sment	Termin al Exam **	Max. Mark s	Terminal Exam	Total
THEO	RY				•		•	
1	18MA110	Engineering Calculus	3	50	50	100	25	50
2	18PHA20/ 18PHB20/ 18PHC20	Physics	3	50	50	100	25	50
3	18CHA30/ 18CHB30/ 18CHC30	Chemistry	3	50	50	100	25	50
4	18EG140	English	3	50	50	100	25	50
5	18ES150	Engineering Exploration	3	50	50	100	25	50
THEO	RY CUM PRAC	TICAL	•					
6	18ME160	Engineering Graphics	3	50	50	100	25	50
PRAC	TICAL							
7	18EG170	English Laboratory	3	50	50	100	25	50
8	18PH180	Physics Laboratory						
9	18CH190	Chemistry Laboratory	3	50	50	100	25	50

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} Terminal Examination will be conducted for maximum marks of 100 and subsequently be reduced to 50 marks for the award of terminal examination marks

		Category	L	Т	Р	Credit
18MA110	ENGINEERING CALCULUS	BS	3	1	0	4

Preamble

This course aims to convey to the student a sense of the utility of calculus and develop technical competence. This course is designed to implement the calculus through geometrically, numerically, algebraically and verbally. Students will apply the main tools for analyzing and describing the behavior of functions of single and multi variables: limits, derivatives, integrals of single and multi variables to solve complex engineering problems using analytical methods and MATLAB.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the concept of functions, limits and continuity	Understand
CO2	Compute derivatives and apply in solving engineering problems	Apply
CO3	Employ partial derivatives to find maxima minima of functions of multi variables	Apply
CO4	Demonstrate and apply the techniques of integration	Apply
CO5	Apply integrals of multivariable to find areas enclosed between two curves and volume enclosed between surfaces	Apply

Mapping with Programme Outcomes

		_										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	М								
CO2	S	S	М	М								
CO3	S	S	S	М								
CO4	S	S	S	М								
CO5	S	S	S	М								

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continuo	us Assessm	Terminal Examination	
Bloom's Category	1	2	3	Terrilliai Examination
Remember	10	10	10	0
Understand	30	30	30	30
Apply	60	60	60	70
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Level Assessment Questions

Course Outcome 1(CO1)

- 1. Define function and limit.
- 2. Estimate the value of $\lim_{x\to 0} \frac{\sin x}{\sin \pi x}$.
- 3. If f(x) is continuous on $(-\infty,\infty)$, what can you say about its graph?

Course Outcome 2(CO2)

- 1. What is wrong with this equation $\frac{x^2+x-6}{x-2} = x+3$ and investigate why the equation $\lim_{x\to 2} \frac{x^2+x-6}{x-2} = \lim_{x\to 2} (x+3)$ is correct.
- 2. Between 0° C and 30° C, the volume V (in cubic centimeters) of 1 kg of water at a temperature T is given approximately by the formula V = $999.87 0.06426T + 0.0085043T^2 0.0000679T^3$, Compute the temperature at which water has its maximum density.
- 3. The voltage, v, across a capacitor of capacitance, in series with a resistor of resistance, v, is given by $(t+1)e^{-1000\,t}$ where $C=1\mu F$, E>0, is a constant. Determine i where $i=C\frac{dv}{dt}$.

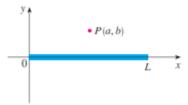
Course Outcome 3(CO3)

- 1. Define partial derivative of a function of two variables.
- 2. Suppose that the temperature at a point (x, y, z) in space is given by

$$T(x, y, z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}$$
, where T is measured in degrees Celsius and (x, y, z)

in meters. In which direction does the temperature increase fastest at the point (1,1,-2)? Identify the maximum rate of increase.

- 3. Compute the dimensions of the rectangular box with largest volume if the total surface area is given as 64 cm².
- 4. Show that the Cobb-Douglas production function $P = bL^{\alpha}K^{\beta}$ satisfies the equation $L\frac{\partial P}{\partial L} + K\frac{\partial P}{\partial K} = \alpha\frac{P}{L}$.

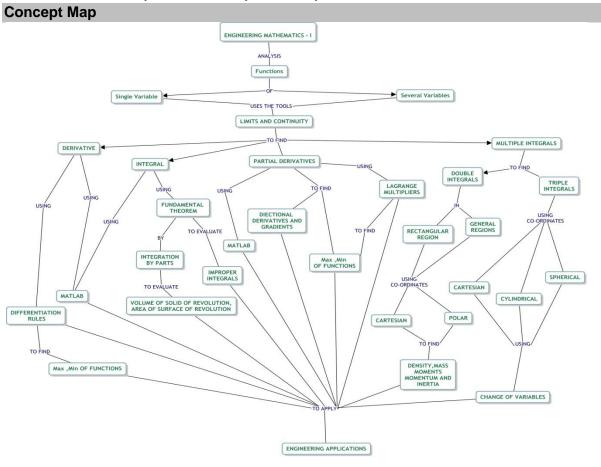

Course Outcome 4(CO4)

Passed in Board of Studies on 14.07.2018

- 1. State fundamental theorem of calculus.
- 2. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8 and x = 0 about the y axis.
- 3. A charged rod of length L produces an electric field at point P(a,b) given by

$$E(P) = \int_{-a}^{L-a} \frac{\lambda b}{4\pi\varepsilon_0 (x^2 + b^2)^{3/2}} dx$$
 where λ is the charge density per unit length on the

rod and ε_0 is the free space permittivity (see the below figure). Evaluate the integral to determine an expression for the electric field E(P).



4. A cantilever beam of length L, fixed at one end and deflected by a distance D at the free end has strain energy V given by $V = \frac{EI}{2} \int\limits_0^L \left(\frac{d^2y}{dx^2}\right)^2 dx$ where EI is the flexural rigidity. The deflection y at a distance x from the fixed end is given by $y = D \left[1 - \cos \left(\frac{\pi x}{2L} \right) \right]$

 $\mathsf{Find}\,V$

Course Outcome 5(CO5)

- 1. Recall any three properties of double integrals
- 2. Calculate the static moments of homogeneous lamina with respect to the coordinate axes. The lamina is bounded by lines $\frac{x^2}{9} + \frac{y^2}{4} = 1$, 2x + 3y 6 = 0.
- 3. Calculate the coordinates of the center of mass of homogeneous solid bounded by surfaces x=0, y=0, z=0, x+y=1, $x^2+y^2=1$.

Syllabus

DIFFERENTIAL CALCULUS

(12 hours)

Representation of functions - New functions from old functions - Limit of a function - Continuity - Limits at infinity - Derivative as a function - Differentiation rules(formula and problems only) - The mean value theorem - Maxima and Minima of functions of one variable - Application problems in engineering - Application problems using MATLAB.

FUNCTIONS OF SEVERAL VARIABLES

(12 hours)

Partial derivatives – Chain rule - Vector functions and their Derivatives - Directional derivatives and gradient vector - Maxima and minima of functions of two variables - Lagrange Multipliers - Application problems in engineering - Application problems using MATLAB.

INTEGRAL CALCULUS

(12 hours)

Area under curves - The definite integrals – Fundamental theorem of calculus - Integration by parts - Volume of solid of revolution - Area of surface of revolution - Improper integrals - Application problems in engineering - Application problems using MATLAB

MULTIPLE INTEGRAL (12 hours)

Iterated integrals - Double integrals over general regions - Double integrals in polar coordinates - Applications of double integrals (density, mass, moments & moments of inertia problems only)

- Triple integrals - Triple integrals in cylindrical coordinates - Triple integrals in spherical coordinates - Change of variables in multiple integrals - Application problems in engineering

Text Book

1) James Stewart, "Calculus Early Transcendentals", 7e, Cengage Learning, New Delhi,

2017. DIFFERENTIAL CALCULUS: [Sections: 1.1, 1.3, 2.2,2.5,2.6,2.8, 3.1-3.6,4.1,4.2]

FUNCTIONS OF SEVERAL VARIABLES: Sections: 14.3, 14.5,13.1,13.2,14.6-14.8]

INTEGRAL CALCULUS: [Sections: 5.1-5.4,7.1, 6.2, 8.2 and 7.8]

MULTIPLE INTEGRAL: [Sections: 15.2-15.5, 15.7-15.10]

2) Lecture Notes on Engineering Mathematics-I Application Problems and Solution Manual, Department of Mathematics, Thiagarajar College of Engineering, Madurai.

Reference Books

- 1) Kuldeep Singh, "Engineering Mathematics Through Appplications",2e, Palgrave Macmillan, 2011.
- 2) Erwin Kreszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2017.
- 3) George B. Thomas, "Thomas Calculus: early transcendentals ", Pearson, New Delhi, 2013.
- 4) R.K.Jain, S.R.K.Iyengar, "Advanced Engineering Mathematics" 5e, Narosa Publishing House, 2016.

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	DIFFERENTIAL CALCULUS	
1.1	Representation of functions, New functions from old functions	1
1.2	Limits of a function	1
1.3	Continuity, Limits at infinity	1

S.No	Topic	No. of
		Hours
1.4	Tutorial	1
1.5	Derivatives as a function, Differentiation rules	2
1.6	The mean value theorem	1
1.7	Maxima and minima of function of one variable	1
1.8	Tutorial	1
1.9	Application problems in engineering	2
1.10	Application problems using MATLAB(Tutorial)	1
2	FUNCTIONS OF SEVERAL VARIABLES	
2.1	Partial derivatives, Chain rule	2
2.2	Vector functions and their derivatives	1
2.3	Tutorial	1
2.4	Directional derivatives, Gradient vector	1
2.5	Maxima and minima of functions of two variables	2
2.6	Lagrange Multipliers	1
2.7	Tutorial	1
2.8	Application problems in engineering	2
2.9	Application problems using MATLAB(Tutorial)	1
3	INTEGRAL CALCULUS	
3.1	Area under curves, The definite integrals, fundamental theorem of	2
	calculus	
3.2	Integration by parts	1
3.3	Tutorial	1
3.4	volume of solid of revolution, area of surface of revolution	2
3.5	Improper integrals	2
3.6	Tutorial	1
3.7	Application problems in engineering	2
3.8	Application problems using MATLAB(Tutorial)	1
4	MULTIPLE INTEGRAL	
4.1	Iterated integrals	1
4.2	Double integrals over general regions	1
4.3	Double integrals in polar coordinates	1
4.4	Tutorial	1
4.5	Applications of double integrals	1
4.6	Triple integrals	2
4.7	Tutorial	1
4.8	Triple integrals in cylindrical coordinates	1
4.9	Triple integrals in spherical coordinates	1
4.10	Change of variables in multiple integrals	1
4.11	Tutorial	1
	Total	48

Course Designers

1. Dr.V.Gnanaraj - vgmat@tce.edu
2. Dr.S.Jeyabharathi - sjbmat@tce.edu
3. Dr.G.Jothilakshmi - gjlmat@tce.edu
4. Dr.A.Anitha - anithavalli@tce.edu
5. Dr.R.Suresh - suresh080183@tce.edu

	PHYSICS
18PHA20	(Common to Civil, Mechanical and
	Mechatronics)

Category	L	Т	Р	Credit
BS	3	0	0	3

Preamble

The course work aims in imparting fundamental knowledge of oscillations, waves and optics, and mechanics which are essential in understanding and designing mechanical systems and measuring devices.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Solve for the solutions and describe the behavior of a damped	Apply
	harmonic oscillator and waves	
CO2	Explain the fundamentals of optical phenomena and its application.	Understand
CO3	Use the vector analytical techniques for analysis of forces and	Apply
	moments in mechanical systems	
CO4	Demonstrate ability to utilize principles of vector mechanics to analyze	Understand
	weather systems	
CO5	Explain the fundamental concepts of kinetics and kinematic of rigid	Understand
	bodies for analysis of practical problems.	
CO6	Use the principles of angular velocity to study three dimensional	Apply
	motion of rigid bodies	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	М	L	L					L	L		
CO2	М	L	L	-					L	L		
CO3	S	М	L	L					L	L		
CO4	М	L	L	-					L	L		
CO5	М	L	L	-					L	L		
CO6	S	М	L	L					L	L		

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continue	ous Assessme	Terminal Examination		
bloom's Category	1	2	3		
Remember	20	20	20	0	
Understand	30	30	30	50	
Apply	50	50	50	50	
Analyse	0	0	0	0	
Evaluate	0	0	0	0	
Create	0	0	0	0	

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. A 5.00 x 10⁵ kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring?
- 2. Show that the wave velocity of deep water waves is twice the group velocity.
- 3. Derive the law of reflection based on Fermats principle.

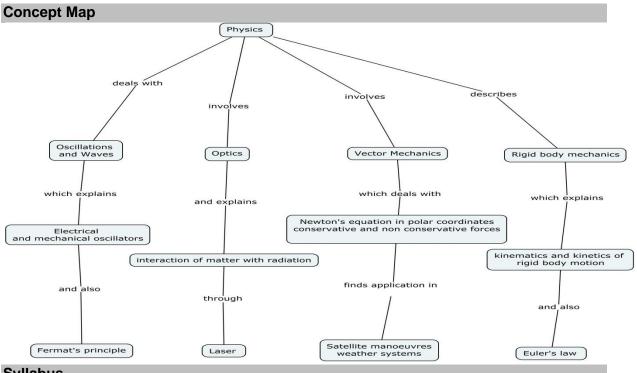
Course Outcome 2 (CO2):

- 1. Consider a lower energy level situated 200 cm⁻¹ from the ground state. There are no other energy levels nearby. Determine the fraction of the population found in this level compared to the ground state population at a temperature of 300 K. Boltzmann's constant is equal to $1.38 \times 10^{-23} \text{JK}^{-1}$. The conversion from cm⁻¹ to joules is given by: E(J) = 100hC E(cm⁻¹), where h is Planck's constant (6.62 x 10^{-34}Js) and c is the speed of light in a vacuum (3 x 10^8ms^{-1})
- 2. Explain the principle, construction and working of Mach-Zehnder interferometer.
- 3. What is a four level solid state laser? Discuss the principle and operation of Nd:YAG Laser.

Course Outcome 3 (CO3):

- 1. A 10, 000 lb aircraft is descending on a cylindrical helix. The rate of descent is $z^{\cdot} = -10ft/s$, the speed is v = 211 ft/s, and $\theta^{\cdot} = 3^{\circ} \approx 0.05$ rad/s. This is standard for gas turbine powered aircraft. Find out the force on the aircraft and the radius of curvature of the path
- 2. Derive Newton's second law of motion in spherical and cylindrical coordinate systems.
- 3. A particle attached to a string of length 2 m is given an initial velocity of 6 m/s. The string is attached to a peg and, as the particle rotates about the peg, the string winds around the peg. By conservation of angular momentum, find the length of string wound around the peg when the velocity of the particle is 20 m/s?

Course Outcome 4 (CO4):


- Consider a situation where a cricket player (fielder) slides to a stop on level ground.
 Using energy considerations (in non conservative forces), calculate the distance the 60 kg cricket player slides, given that his initial speed is 7 m/s and the force of friction against him is a constant 430 N.
- 2. Compute the centripetal force per unit mass on a spacecraft in an 820 km circular Polar orbit as it flies over the equator and the South pole.
- 3. Solve Newton's equations of motion in polar coordinates

Course Outcome 5 (CO5):

- 1. A motor shaft attains a velocity of 1500 rpm in 3 seconds starting from rest. Assuming constant angular acceleration, find out the number of full revolution of the shaft during this period.
- 2. Derive Euler's equations of motion of a rigid body.
- 3. A cylinder of diameter 500 mm rolls down an inclined plane with uniform acceleration (of the center-of-mass) a=0.1 m/s². At an instant t_0 , the mass-center has speed $v_0=0.5$ m/s. (i) Find the angular speed ω and the angular acceleration ω at t_0 . (ii) How many revolutions does the cylinder make in the next 2 seconds?

Course Outcome 6 (CO6):

- 1. A solid right circular cone of base radius *r* and height *h* rolls on a flat surface without slipping. The centre of the circular base moves in a circular path around the z- axis (vertical axis passing through the tip of the cone) with a constant speed *v*. Determine the angular velocity and angular acceleration of the solid cone.
- 2. Derive an expression for angular velocity and its rate of change for three dimensional motion of a rigid body.
- 4. Discuss the conical motion of a rod with center of mass fixed.

Syllabus

Oscillations and Waves

Simple harmonic motion - Mechanical and Electrical simple harmonic oscillators - energy decay in a damped harmonic oscillator - Non-dispersive transverse and longitudinal waves in one dimension - Waves with dispersion - water waves- Acoustic waves- superposition of waves - wave groups and group velocity - Rayleigh criteria for limit of resolution and its applications to imaging.

Optics

Fermat's principle of stationary time - reflectance and transmittance - evanescent wave. Mach-Zehnder interferometer - Fraunhofer diffraction from a single slit and a circular aperture - Einstein's theory of matter radiation interaction and A and B coefficients $-CO_2 - Nd-YAG$ lasers - applications of lasers.

Vector Mechanics of Particles

Transformation of scalars and vectors under Rotation transformation - Forces in Nature - Newton's laws and its completeness in describing particle motion - Solving Newton's equations of motion in polar coordinates -Conservative and non-conservative forces - curl of a force field -Conservation of Angular Momentum - Energy equation and energy diagrams – circular and elliptical orbits.- Applications to Satellite manoeuvres

Rigid Body Mechanics

No. of

2

2

2

2

2

Motion of a rigid body in the plane - Rotation in the plane - Kinematics in a coordinate system rotating and translating in the plane - Angular momentum about a point of a rigid body in planar motion - Euler's laws of motion - their independence from Newton's laws - Two-dimensional motion in terms of angular velocity vector, and its rate of change – Difference between 2D & 3D motion.

Text Book

- 1. Ian G.Main, Vibrations and waves in Physics -3rd edition, Cambridge University, Press, 1994.
- 2. M.K. Verma, Introduction to Mechanics, CRC Press, 2009.

Course Contents and Lecture Schedule

- 3. JL Meriam and L.G. Kraige, Engineering Mechanics Dynamics 7th edition, Wiley, 2015.
- 4. D. Kleppner and R. Kolenkow, An Introduction to Mechanics 1st edition, McGraw Hill, 2009.

Reference Books

S No.

- 1. M.K.Harbola, Engineering Mechanics-2nd edition, Cengage Learning, 2012.
- 2. JL Synge & BA Griffiths, Principles of Mechanics, McGraw-Hill Book company Inc, 1949.
- 3. WT Thomson, Theory of Vibrations with Applications, -3rd edition, CBS Publishers, 2002.

Topic

Hours 1. Oscillations & Waves 1.1 Simple harmonic motion – Mechanical and Electrical simple harmonic 2 oscillators. 1.2 Energy decay in a damped harmonic oscillator – Non-dispersive transverse 2 and longitudinal waves in one dimension. 1.3 Waves with dispersion - water waves- Acoustic waves - superposition of 1 waves – wave groups and group velocity. 1.4 Rayleigh criteria for limit of resolution and its applications to imaging 1 2 Optics 2.1 Fermat's principle of stationary time - reflectance and transmittance -2 evanescent wave. Mach-Zehnder interferometer. 2.2 Fraunhofer diffraction from a single slit and a circular aperture. 1 Einstein's theory of matter radiation interaction and A and B coefficients . 2.3 1 2.4 CO₂ Laser. 1 1 2.5 Nd-YAG lasers Applications of lasers. 3. **Vector Mechanics of Particles** 3.1 2 Transformation of scalars and vectors under rotation transformation 3.2 Forces in Nature, Newton's laws and its completeness in describing particle 2

Conservative and non-conservative forces, curl of a force field,

Energy equation and energy diagrams, circular and elliptical orbits

Solving Newton's equations of motion in polar coordinates

Motion of a rigid body in the plane, Rotation in the plane

Conservation of angular momentum

Applications to Satellite manoeuvres

Rigid Body Mechanics

motion

3.3

3.4

3.5

3.6

4.

4.1

S No.	Topic	No. of Hours
4.2	Kinematics in a coordinate system rotating and translating in the plane	2
4.3	Angular momentum about a point of a rigid body in planar motion	2
4.4	Euler's laws of motion, their independence from Newton's laws	2
4.5	Two-dimensional motion in terms of angular velocity vector, and its rate of change.	2
4.6	Distinction between 2D & 3D motion	2
		36
	Total	

Course Designers

Dr. M.Mahendran mmphy@tce.edu
 Dr. N. Sankara Subramanian nssphy@tce.edu
 Dr. R. Kodipandyan rkp@tce.edu
 Dr. A. Karuppasamy akphy@tce.edu

40011000	PHYSICS
18PHB20	(Common to EEE and ECE)

Category	L	Τ	Р	Credit
BS	3	0	0	3

Preamble

The course work aims in imparting fundamental knowledge of oscillations and waves and electromagnetic theory which are essential in understanding and explaining engineering devices.

Prerequisite

Basic course (No prerequisite)

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Solve for the solutions and describe the behavior of a damped	Apply
	harmonic oscillator and waves	
CO2	Explain the fundamentals of optical phenomena and its application.	Understand
CO3	Understand the fundamentals of electrostatics and Calculation of	Apply
	electric field and electrostatic potential for a charge distribution	
CO4	Explain bound charges due to electric polarization and estimation of	Understand
	vector potential through concepts of magneto statics.	
CO5	Describe and make calculations of plane electromagnetic waves in	Understand
	homogeneous media and derive Poynting theorem	
CO6	Learn the propagation of EM waves and its applications by solving	Apply
	physical problems and Energy and Momentum carried by	
	electromagnetic waves through linear media.	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	М	L	L					L	L		
CO2	М	L	L	-					L	L		
CO3	S	М	L	L					L	L		
CO4	М	L	L	-					L	L		
CO5	М	L	L	-					L	L		
CO6	S	М	L	L					L	L		

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continuo	us Assessm	Terminal Examination	
Bloom's Category	1	2	3	Terrilliai Examination
Remember	20	20	20	20
Understand	30	30	30	30
Apply	50	50	50	50
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Assuming a car is 900 kg and has a suspension system that has a force constant 6.5x10⁴ N/m. The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if no damping occurs?
- 2. Establish the connection between quality factor, width of response and energy dissipation.
- 3. State the Rayleigh's criteria for limit of resolution.

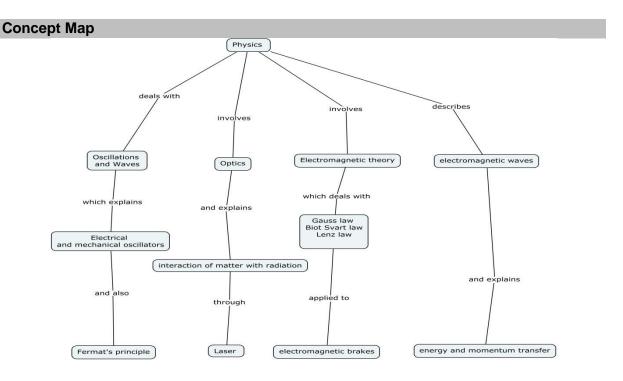
Course Outcome 2 (CO2):

- 1. Differentiate between laser light and ordinary light.
- 2. Predict the working of the CO2 laser without Helium gas in the mixture.
- 3. Explain the construction and working of Nd-YAG Laser

Course Outcome 3 (CO3):

- 1. Discuss the Continuous charge distribution and the electric field produced by it.
- 2. Derive Laplace's and Poisson's equation
- 3. Deduce Gauss' law.

Course Outcome 4 (CO4):


- 1. Summarize physical interpretation of bound charges
- 2. Define vector potential and give its significance.
- 3. Explain the magnetic field of a steady current and hence obtain Bio-Savart law.

Course Outcome 5 (CO5):

- 1. Derive and interpret Continuity equation for current densities.
- 2. Write and explain the importance of Poynting vector
- 3. Deduce Faraday's law of electromagnetic from the Maxwell's equation

Course Outcome 6 (CO6):

- 1. Discuss the propagation of EM waves through vacuum.
- 2. Define and obtain expressions for transmission and reflection coefficients
- 3. Find the reflection and transmission coefficients of an electric field wave travelling
- in wave and incident normally on a boundary between air and a dielectric having Permeability $\mu 0$ and permittivity 4.74.

Syllabus

Oscillations and Waves

(6 hours)

Simple harmonic motion - Mechanical and Electrical simple harmonic oscillators - energy decay in a damped harmonic oscillator - Non-dispersive transverse and longitudinal waves in one dimension - Waves with dispersion - water waves - Acoustic waves - superposition of waves - wave groups and group velocity - Rayleigh criteria for limit of resolution and its applications to imaging

Optics (6 hours)

Fermat's principle of stationary time - reflectance and transmittance - evanescent wave. Mach-Zehnder interferometer - Fraunhofer diffraction from a single slit and a circular aperture - Einstein's theory of matter radiation interaction and A and B coefficients $-CO_2 - Nd-YAG$ lasers - applications of lasers.

Electromagnetic Theory

(12 Hours)

Electrostatics: Introduction, Calculation of electric field and electrostatic potential for a charge distribution - Gauss' law, Divergence and curl of electrostatic field, Application: Faraday's cage and coffee-ring effect(qualitative only). Electrostatic field and potential of a dipole. Bound charges due to electric polarization; Electric displacement; Solving simple electrostatics problems in presence of dielectrics.

Magnetostatics: Bio-Savart law, Divergence and curl of static magnetic field; vector potential and calculating it for a given magnetic field using Stokes' theorem. Lenz's law; Electromagnetic breaking (qualitative only)

Electromagnetic waves

(12 hours)

Continuity equation for current densities- Modifying equation for the curl of magnetic field – Energy in an electromagnetic field - Flow of energy and Poynting vector - Maxwell's equations- The wave equation- Plane electromagnetic waves in Vacuum— their transverse nature and Polarization; relation between electric and magnetic fields of an electromagnetic wave -

Energy and Momentum carried by electromagnetic waves, Propagation through linear media-Normal incidence - problems.

Text Books

- 1. Ian G.Main, Vibrations and waves in Physics -3rd edition, Cambridge University Press,1994.
- 2. David J. Griffiths, Introduction to Electrodynamics, Prentice Hall, Second Indian edition, 1981.
- 3. Paul Lorrain, Dale R. Corson, Francois Lorrain, Electromagnetic Fields and Waves, 3rd Edition, W.H. Freeman, 1990.
- 4. A.A. Rangwala, A.S. Mahajan, Electricity and Magnetism 1st edition, McGraw Hill Education, 2004.

Reference

- 1. Halliday Resnick Krane, Physics Volume 2, Fifth edition, Wiley Publications, 2002.
- 2. W. Saslow, Electricity, Magnetism and light, Academic press 2005.
- 3. WT Thomson, Theory of Vibrations with Applications, -3rd edition, CBS Publishers, 2002.

Course Contents and Lecture Schedule S No. of Topic No. Hours 1. Oscillations & Waves 1.1 Simple harmonic motion - Mechanical and Electrical simple harmonic 2 oscillators. 1.2 Energy decay in a damped harmonic oscillator - Non-dispersive 2 transverse and longitudinal waves in one dimension. 1.3 Waves with dispersion – water waves – Acoustic waves – superposition of waves – wave groups and group velocity. Rayleigh criteria for limit of resolution and its applications to imaging. 1.4 1 **Optics** 2.1 Fermat's principle of stationary time - reflectance and transmittance -2 evanescent wave. Mach-Zehnder interferometer. 2.2 Fraunhofer diffraction from a single slit and a circular aperture. 2.3 Einstein's theory of matter radiation interaction and A and B coefficients 1 2.4 CO₂ Laser 1 2.5 Nd-YAG lasers Applications of lasers. **Electromagnetic Theory** 3 Electrostatics: Introduction, Calculation of electric field and electrostatic 3.1 4 potential for a charge distribution - Gauss' law - work done- Electric potential problems. Divergence and curl of electrostatic field 3.2 Applications: Faraday's cage and coffee-ring effect. Electrostatic field and 2 potential of a dipole. Bound charges due to electric polarization; Electric displacement; Solving 3.3 2 simple electrostatics problems in presence of dielectrics. 3.4 Magnetostatics: Bio-Savart law, Divergence and curl of static magnetic 2 field

S No.	Topic	No. of Hours
3.5	vector potential and calculating it for a given magnetic field using Stokes'	2
	theorem. Lenz's law; Electromagnetic breaking (qualitative only)	
4	Electromagnetic waves	
4.1	Continuity equation for current densities- Modifying equation for the curl	2
	of magnetic field –	
4.2	Energy in an electromagnetic field - Flow of energy and Poynting vector -	3
	Maxwell's equations- The wave equation-	
4.3	Plane electromagnetic waves in Vacuum– their transverse nature and	2
	Polarization	
4.4	Relation between electric and magnetic fields of an electromagnetic wave	2
4.5	Energy and Momentum carried by electromagnetic waves, Propagation	3
	through linear media- Reflection and Transmission coefficients, problems.	
	Total	36

Course Designers

Dr.S.Rajathi srphy@tce.edu
 Dr. V.Gayathri vgphy@tce.edu
 Dr.M.Senthamizh selvi
 Dr. A.L.Subramaniyan alsphy@tce.edu

18PHC20 (Common to CSE and IT)

Category	L	Т	Р	Credit
BS	3	0	0	3

Preamble

The course work aims in imparting fundamental knowledge of oscillations and waves and optics and quantum mechanics which are essential in understanding and explaining engineering devices.

Prerequisite

Basic course (No prerequisite)

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Solve for the solutions and describe the behavior of a damped	Apply
	harmonic oscillator and waves	
CO2	Explain the fundamentals of optical phenomena and its application.	Understand
CO3	Explain the basic principles of Quantum mechanic	Understand
CO4	Use the principles of quantum mechanics to calculate observables	Apply
	on known wave functions	
CO5	Solve Schrodinger equation for simple potentials ,scattering and	Understand
	related phenomena	
CO6	identify and relate the Eigen value problems for energy, momentum,	Apply
	angular momentum and explain the idea of spin	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	М	L	L					L	L		
CO2	М	L	L	-					L	L		
CO3	М	L	L	-					L	L		
CO4	S	М	L	L					L	L		
CO5	М	L	L	-					L	L		
CO6	S	М	L	L					L	L		

S- Strong; M-Medium; L-Low

Assessment Pattern

Plaamia Catagony	Continuo	us Assessm	Terminal Examination	
Bloom's Category	1	2	3	Terminal Examination
Remember	20	20	20	20
Understand	30	30	30	30
Apply	50	50	50	50
Analyze	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Level Assessment Questions

Course Outcome 1 (CO1)

- 1. Assuming a car is 900 kg and has a suspension system that has a force constant 6.5x10⁴ N/m. The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if no damping occurs?
- 2. Establish the connection between quality factor, width of response and energy dissipation.
- 3. State the Rayleigh's criteria for limit of resolution.

Course Outcome 2 (CO2)

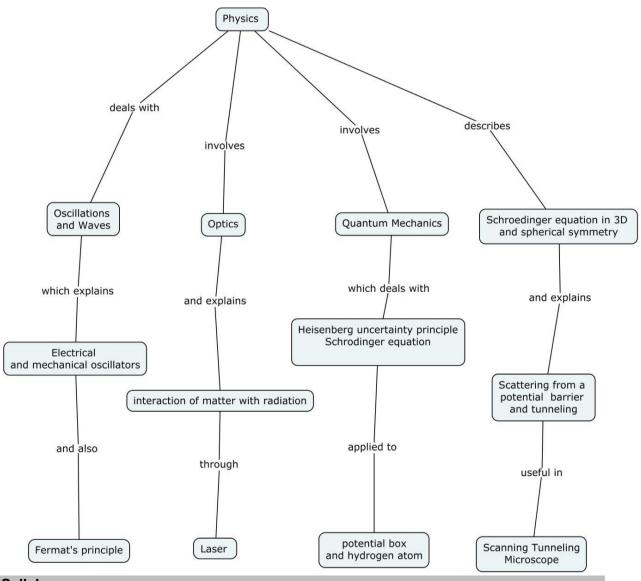
- 1. Find the ratio of population of two energy states in a Laser the transition between which is responsible for the emission of photons of wavelength6893A at a temperature of 300K.Comment on the type of emission based on the ration of population.
- 2. Analyze the role of mixture of gases for a CO₂ laser and predict the working of the laser without Helium gas in the mixture.
- 3. Differentiate between CO₂ laser and Nd-YAG Laser with respect to their construction and energy level diagram.

Course Outcome 3 (CO3)

- 1. List the properties of wave function.
- 2. Set up the time independent Schrodinger wave equation and explain the Eigen functions and Eigen values.
- 3. Describe an experiment to verify the uncertainty principle.

Course Outcome 4 (CO4)

- 1. Calculate the expectation value of the position of a particle trapped in a box of length 10A° wide.
- 2 Compute the smallest possible uncertainty in position of an electron moving with a Velocity of $3x10^7$ m.
- 3 An electron is constrained to a one dimensional box of side 1nm.Calculate the first four Eigen values in electron volt.


Course Outcome 5 (CO5)

- 1. Assuming the time independent Schrödinger wave equation, discuss the solution for a particle in a three dimensional potential well of infinite height.
- 2. Discuss the barrier tunneling phenomenon for a rectangular finite potential barrier of height $V_{o.}$
- 3. State the principle of STM and describe its working.

Course Outcome 6 (CO6)

- 1. Identify the degeneracies in hydrogen atom energy level based on the principle of quantum numbers.
- 2. Illustrate the vector model of orbital angular momentum
- 3. Given $\psi(x) = A\sin(kx)$. Find the Eigen values of the operator $0 = \partial^2/\partial x^2$. Identify whether $\partial/\partial x$ is an Eigen operator

Concept Map

Syllabus

Oscillations and Waves: Simple harmonic motion - Mechanical and Electrical simple harmonic oscillators - energy decay in a damped harmonic oscillator - Non-dispersive transverse and longitudinal waves in one dimension - Waves with dispersion - water waves – Acoustic waves - superposition of waves - wave groups and group velocity – Rayleigh criteria for limit of resolution and its applications to imaging.

Optics: Fermat's principle of stationary time - reflectance and transmittance - evanescent wave. Mach-Zehnder interferometer - Fraunhofer diffraction from a single slit and a circular aperture - Einstein's theory of matter radiation interaction and A and B coefficients $-CO_2-Nd-YAG$ lasers - applications of lasers.

Introduction to Quantum mechanics

Wave nature of Particles, Time-dependent and time independent Schrodinger equation for wave function, Born interpretation, probability current, Expectation values, Free-particle wave function and wave-packets, Uncertainty principle – Derivation & Experiment. Solution of stationary-state Schrodinger equation for one dimensional problems– particle in a box, Square-well potential, linear harmonic oscillator.

Applying the Schrodinger equation

Numerical solution of stationary-state - Schrodinger equation for three dimensional problems for different potentials and related examples - Angular momentum operator - Hydrogen atom ground-state, orbitals - interaction with magnetic field, spin. Scattering from a potential barrier and tunneling; related examples like alpha-decay, field ionization Schrodinger equation for spherically symmetric potentials and scanning tunneling microscope.

Text Books

- 1. Ian G. Main, Vibrations and waves in Physics -3rd edition, Cambridge University press, .1994.
- 2. David .J. Griifiths, Introduction to quantum mechanics -2nd edition, Cambridge University press, 2017.
- 3. P M Mathews, K.Venkatesan, Quantum mechanics, 2 nd edition, Tata McGraw-Hill Education, 2010.

Reference

- http://nptel.ac.in/courses/115106066/Quantum mechanics Prof. S. Lakshmi Bala, IIT Madras.
- 2. http://nptel.ac.in/courses/115101010/ Quantum mechanics Prof. S. H.Patil, IIT Bombay.
- 3. http://nptel.ac.in/courses/115104096/ Introduction to quantum mechanics, Prof Manoj K.Harbola, IIT Kanpur

Course	Contents and Lecture Schedule	
S No.	Topic	No. of Hours
1.	Oscillations & Waves	
1.1	Simple harmonic motion – Mechanical and Electrical simple harmonic oscillators.	2
1.2	Energy decay in a damped harmonic oscillator – Non-dispersive transverse and longitudinal waves in one dimension.	2
1.3	Waves with dispersion – water waves – Acoustic Waves – superposition of waves – wave groups and group velocity.	1
1.4	Rayleigh criteria for limit of resolution and its applications to imaging.	1
2	Optics	
2.1	Fermat's principle of stationary time - reflectance and transmittance - evanescent wave. Mach-Zehnder interferometer.	2
2.2	Farunhofer diffraction from a single slit and a circular aperture.	1
2.3	Einstein's theory of matter radiation interaction and A and B coefficients.	1
2.4	CO ₂ Laser.	1
2.5	Nd-YAG lasers -Applications of lasers.	1
3	Introduction to Quantum mechanics	
3.1	Wave nature of Particles, Time-dependent and time independent Schrodinger equation for wave function.	3
3.2	Born interpretation, probability current, Expectation values.	3
3.3	Free-particle wave function and wave-packets, Uncertainty principle – Derivation & Experiment.	3

S No.	Торіс					
3.4	Schrodinger equation for one dimensional problems- particle in a box,	3				
	square-well potential, linear harmonic oscillator.					
4	Applying the Schrodinger equation					
4.1	Numerical solution of stationary-state	1				
4.2	Schrodinger equation for one dimensional problem for different potentials	3				
	and related examples.					
4.3	Angular momentum operator, Hydrogen atom ground-state, orbitals,	3				
	interaction with magnetic field, spin					
4.4	Scattering from a potential barrier and tunneling; related examples like	3				
	alpha-decay, field ionization					
4.5	Schrodinger equation for spherically symmetric potentials	1				
4.6	Scanning tunneling microscope.	1				
	Total	36				

Course Designers

Dr. M.Mahendran mmphy@tce.edu
 Mr. V.Veeraganesh vvgphy@tce.edu
 Dr. A.L.Subramaniyan alsphy@tce.edu

4. Dr.T.Manichandran <u>stmanichandran@tce.edu</u>

	CHEMISTRY
18CHA30	(COMMON TO CIVIL, MECHANICAL AND
	MECHATRONICS)

Category	L	Т	Р	Credit
BS	3	0	0	3

The objective of this course is to bestow a better understanding of basic concepts of chemistry and its applications on Civil, Mechanical and Mechatronics domain. It also imparts knowledge on properties of water and its treatment methods, spectroscopic techniques for material characterization, corrosion and protection of metals. This course also highlights preparation, properties and applications of polymer and composite materials. It also gives basic idea about adhesives and lubricants and their mechanisms.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identify the properties of water and its treatment methods	Understand
CO2	Summarize the Principles and Instrumentations of Spectroscopic	Understand
	techniques	
CO3	Select the appropriate spectroscopic techniques for characterization of	Apply
	materials	
CO4	Adapt the customized corrosion control methods	Apply
CO5	Dramatize the preparation, properties and applications of Engineering	Understand
	materials	
CO6	Describe the mechanism of adhesion and lubrication	Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1.	М	-	-	-	-	-	-	-	-	-	М	-
2.	М	L	L	-	-	-	-	-	-	-	-	-
CO3.	S	S	М	М	-	-	-	-	-	-	-	-
CO4.	S	S	М	М	-	-	L	-	-	-	L	-
CO5.	М	М	М	-	-	-	L	-	-	-	-	-
CO6.	М	-	L	-	-	-	-	-	-	-	-	-
S- Strong	S- Strong: M-Medium: L-Low											

Assessment Pattern

Bloom's Category	Continuo	ous Assessm	Terminal Examination	
Bloom's Category	1	2	3	Terminal Examination
Remember	20	20	20	20
Understand	40	40	40	40
Apply	40	40	40	40
Analyze	-	-	-	-
Evaluate	-	-	-	-
Create	-	-	-	-

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Distinguish between scale and sludge.
- 2. 100 ml of given water sample consumed 48 ml of EDTA during titration using EBT indicator. 35 ml of same EDTA consumed by 100 ml of standard hard water containing 1 mg of pure CaCO₃ per ml. Calculate the permanent, temporary and total hardness of given water sample in CaCO₃ equivalents.
- 3. Outline the steps involved in the waste water treatment process.

Course Outcome 2 (CO2):

- 1. State Beer-Lambert law.
- 2. Write the selection rule in absorption spectroscopy.
- 3. Explain the procedure involved in finding the metals present in an alloy sample using ICP-OES.

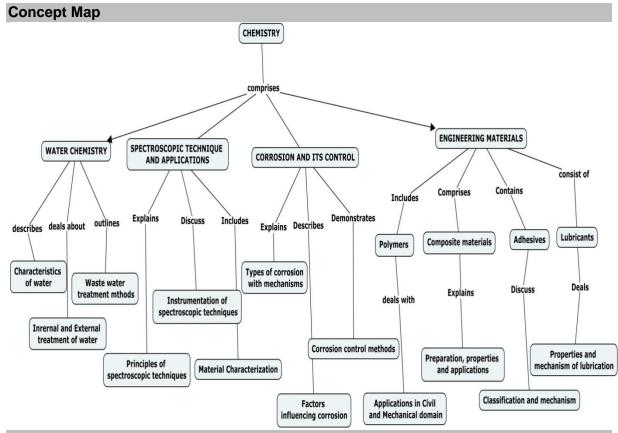
Course Outcome 3 (CO3):

 Compare the stretching frequencies of carbonyl functional groups in the following compounds

2. Following Woodward-Fiesher- scott rules, it has been observed that the following compounds have absorption maximum at (i) 225 nm, (ii) 220 (iii) 230. Explain which is which.

3. Describe the function of different magnets available to generate magnetic field in MRI scanner.

Course Outcome 4 (CO4)


- 4. Illustrate the different forms of corrosion with appropriate mechanism
- 5. Dramatize suitable methods to prevent corrosion of iron bar used in construction.
- 6. Discuss in detail about the constituents and functions of paint.

Course Outcome 5 (CO5)

- 1. Explain the application of composite materials in automobile engineering.
- 2. Demonstrate the applications of polymer in the enhancement of concrete properties.
- 3. Summarize the properties and application of reinforced composite materials.

Course Outcome 6 (CO6)

- 1. List the types of lubricant materials.
- 2. Identify the factors which influence the action of adhesive.
- 3. Discuss the mechanism of lubrication.

Syllabus

Passed in Board of Studies on 14 07 2018

Water Chemistry: Water- sources-Hardness of water-types-Estimation of hardness of water by EDTA method. Disadvantages of hardwater -Boiler troubles- scale & sludge. Internal treatment methods. External treatment methods- zeolite, ion exchange. Desalination process-reverse osmosis, electrodialysis, multi stage flash distillation. Waste water treatment processes.

Spectroscopic technique and applications-Principles of spectroscopy and selection rules-Electronic spectroscopy, Fluorescence- applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules- Applications. Nuclear magnetic resonance and magnetic resonance imaging. Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Optical Emission Spectroscopy- Principle, instrumentation and applications.

Corrosion and its prevention-Corrosion- causes- factors- types- chemical, electrochemical corrosion (galvanic, differential aeration), Corrosion of steel in various environments. Rate of corrosion. Corrosion control - material selection and design aspects - electrochemical protection – sacrificial anode method and impressed current cathodic method. Coatings – Metallic – Chromate conversion coating, electroplating – precious metal coating. Paintsconstituents and function.

Engineering materials – Polymers - Introduction-classification-properties –applications in construction and manufacturing processes. Composite Materials: Introduction-Classification – Preparation, properties and applications. Fiber-Reinforced Composites-preparation, properties and applications..Adhesives- Introduction-classification-fundamental aspects – mechanism of adhesion- factors influencing adhesive action. Lubricants-introduction-classification-properties-functions-mechanism of lubrication.

Text Book

- 1. P.C. Jain and Monica Jain, A Textbook of Engineering Chemistry, DhanpatRai publications, New Delhi, 16th edition, 2015.
- 2. C. N. Banwelland E.M. McCash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill (India), 5th Edition, 2013.

Reference Books

- 1. S.S. Dara and S.S.Umare, "A Textbook of Engineering Chemistry", S.Chand & Company, 12th Edition, Reprint, 2013.
- 2. Shashi Chawla, "A text book of Engineering Chemistry", Dhanpat Rai & Co.(pvt) ltd, 3rd edition, reprint 2011.

S. No. Topic					
J. 140.	Торіс				
1.0	Water Chemistry				
1.1	Introduction -Water- sources-Hardness of water-types	1			
1.2	Estimation of hardness of water by EDTA method	2			
1.3	Disadvantages of hard water -Boiler troubles- scale & sludge.	1			
1.4	Internal treatment methods	1			
1.5	External treatment methods- zeolite, ion exchange	1			
1.6	Desalination process- reverse osmosis, electrodialysis, multi stage	1			
1.0	flash distillation				
1.7	Waste water treatment processes	2			
2.0	Spectroscopic technique and applications				
2.1	Introduction	1			
2.2	Principles of spectroscopy and selection rules	1			
2.3	Electronic spectroscopy, Fluorescence- applications in medicine.	1			
2.4	Vibrational and rotational spectroscopy of diatomic molecules-	2			
2.4	Applications				
2.5	Nuclear magnetic resonance and magnetic resonance imaging	2			
	Atomic Absorption Spectroscopy and Inductively Coupled Plasma-				
2.6	Optical Emission Spectroscopy- Principle, instrumentation and				
	applications.				
3.0	Corrosion and its prevention				
3.1	Corrosion- causes- factors-	1			
3.2	types- chemical, electrochemical corrosion (galvanic, differential	2			
	aeration), Corrosion of steel in various environments (Marine)				
3.3	Rate of corrosion	1			
3.4	Corrosion control - material selection and design aspects	1			
3.5	electrochemical protection – sacrificial anode method and impressed	1			
0.0	current cathodic method				
3.6	Coatings – Metallic - Chromate conversion coating, electroplating –	2			
	precious metal coating.				
3.7	Paints- constituents and function.	1			
4.0	Engineering materials				

S. No.	Topic			
4.1	Polymers - Introduction-classification-properties	1		
4.2	Applications in construction and mechanical domains	1		
4.3	Composite Materials: Introduction-Classification – Preparation, properties and applications of Polymer Matrix Composites,	1		
4.4	Metal Matrix Composites, Ceramic Matrix Composites Carbon-Carbon Composites	2		
4.5	Fiber-Reinforced Composites- Glass, Silica, Kevlar, carbon, boron, silicon carbide, and boron carbide fibers and nature-made composites, and applications.	2		
4.6	Adhesives- Introduction-classification-fundamental aspects – mechanism of adhesion- factors influencing adhesive action	1		
4.7	Lubricants-introduction-classification-properties-functions-mechanism of lubrication.	1		
	Total	36		

Course Designers:

1.	Dr. M.Kottaisamy	hodchem@tce.edu
2	Dr.(Mrs).K.Radha	krchem@tce.edu
2.	Dr.S.Rajkumar	rajkumarsubramanium@tce.edu

3. Dr.M.Velayudham mvchem@tce.edu

18CHB30	CHEMISTRY (Common to EEE and ECE)
10011030	(Common to EEE and ECE)

Category	L	Т	Р	Credit
BS	3	0	0	3

This course work aims in imparting fundamental knowledge of materials and their applications in electrical, electronics and communication engineering. This course provides exposure to the students regarding the characterization of materials by spectroscopic methods. This course also deals with the selection of materials based on their properties for application in energy storage, energy conversion and electronic devices. It also extends the importance of water and gives better understanding of Water treatment processes.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1.	Identify the properties of water and its treatment methods	Understand
CO2.	Summarize the Principles and Instrumentations of Spectroscopic	Understand
	Techniques	
CO3.	Select the appropriate spectroscopic techniques for characteristics	Apply
	of materials	
CO4.	Outline the importance of industrial electrochemical processes and	Understand
	protective coating	
CO5.	Indicate the materials best suited for the construction of energy	Apply
	storage devices for different applications	
CO6.	Identify the implications of material properties in the performance of	Apply
	electronic devices.	

Mapping with Programme Outcomes

		_										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	М	L	-	-	-	-	-	-	-	-	L
CO2	М	М	L	-	-	-	-	-	-	-	-	-
CO3	S	S	L	-	-	-	-	-	-	-	-	-
CO4	М	М	М	М	-	-	L	-	-	-	-	L
CO5.	S	S	М	М	-	-	М	-	-	-	-	L
CO6	S	S	М	М	-	-	М	-	-	-	-	L
0.01		I'	I I									

S- Strong; M-Medium; L-Low

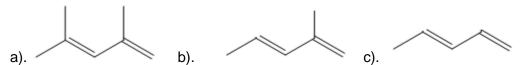
Assessment Pattern

Bloom's Category	Continuo	us Assessm	- Terminal Examination	
Bloom's Category	1 2			
Remember	20	20	20	20
Understand	30	30	30	30
Apply	50	50	50	50
Analyze	_	_	_	_
Evaluate	_	_	_	_
Create	_	_	_	_

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Distinguish between scale and sludge.
- 2. 100 ml of given water sample consumed 48 ml of EDTA during titration using EBT indicator. 35 ml of same EDTA consumed by 100 ml of standard hard water containing 1 mg of pure CaCO₃ per ml. Calculate the permanent, temporary and total hardness of given water samples in CaCO₃ equivalents.
- 3. Outline the steps involved in the waste water treatment process.

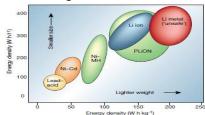

Course Outcome 2 (CO2):

- 4. State Beer-Lambert law.
- 5. Write the selection rule in absorption spectroscopy.
- 6. Explain the procedure involved in finding the metals present in an alloy sample using ICP-OES.

Course Outcome 3 (CO3):

 Compare the stretching frequencies of carbonyl functional groups in the following compounds

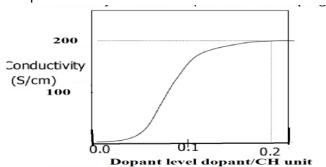
2. Following Woodward-Fiesher- scott rules, it has been observed that the following compounds have absorption maximum at (i) 225 nm, (ii) 220 (iii) 230. Explain which is which.


3. Describe the function of different magnets available to generate magnetic field in MRI scanner.

Course Outcome 4 (CO4)

- 1. Explain the drawbacks of gold electroplating.
- 2. Name the different types of electrolyte used in platinum electroplating.
- **3.** Write the equations for hydrogen generation by electrolysis process under acidic and alkaline conditions.

Course Outcome 5 (CO5)


- 1. Illustrate the working principle, charging and discharging reactions in Lead acid battery.
- 2. With the help of comparative chart of different battery types, justify the reason for considering Lithium ion batteries as future power source.

3. Illustrate H₂-O₂ fuel cell construction and explain associated electrochemical reactions.


Course Outcome 6 (CO6)

- 1. Explain the conduction mechanism of polyaniline as a host for enzyme in biosensor.
- 2. In the following profile, identify the reason why the conductivity of polymer has been increased with dopant level.

3. Identify the suitable bio sensing materials for the detection of glucose in human blood serum.

Concept Map

Syllabus

Water Chemistry: Water- sources-Hardness of water-types-Estimation of hardness of water by EDTA method. Disadvantages of hardwater -Boiler troubles- scale & sludge.Internal treatment methods. External treatment methods- zeolite, ion exchange. Desalination process-reverse osmosis, electrodialysis, multi stage flash distillation. Waste water treatment processes.

Spectroscopic technique and applications -Principles of spectroscopy and selection rules-Electronic spectroscopy, Fluorescence- applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules- Applications. Nuclear magnetic resonance and magnetic resonance imaging. Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Optical Emission Spectroscopy- Principle, instrumentation and applications.

Electrochemical power system-Electrochemistry–Basics - Industrial electrolytic process – Water electrolysis – Hydrogen generator- Electroplating - Decorative and functional coating-Value added coatings and Electroless process of making printed circuit board- Materials for Energy storage: Batteries - High energy density and Power density batteries - Operational characteristics – Primary and Secondary batteries – Fuel cells – Basic concept and types - Advantages and Disadvantages of fuel cell-Hydrogen Economy-Hydrogen storage- Super capacitors.

Advanced Engineering materials: Polymers and its composites for Electronic devices - Dielectric, mechanical and electrical properties-chemical methods for tailoring the properties-Conducting polymers – principle and preparation method-conduction mechanism–application of polymer and its composites in communication and flexible electronic devices - Frequency selective surfaces-Sensing properties of materials-concept-Applications

Text Book

- 1. P.C. Jain and Monica Jain, A Textbook of Engineering Chemistry, DhanpatRai publications, New Delhi, 16th edition, 2015.
- 2. C. N. Banwell and E.M. McCash, Fundamentals of Molecular Spectroscopy, TataMcGraw-Hill (India), 5th Edition, 2013.

Reference Books

- 1. A.J. Bard and L.R. Faulkner, Electrochemical Methods, Fundamentals and Application. Wiley,2001
- 2. 2.Y.R.Sharma, Elementary Organic Spectroscopy, S. Chand, 2007.
- 3. 3.ShashiChawla, A text book of Engineering Chemistry, Dhanpat Rai& Co.(pvt) Ltd, 3rd Edition, reprint 2013

Course	Contents and Lecture Schedule	
S.No	Topic	No. of Hours
1.0	Water Chemistry	
1.1	Introduction -Water- sources-Hardness of water-types	1
1.2	Estimation of hardness of water by EDTA method	2
1.3	Disadvantages of hard water -Boiler troubles- scale & sludge.	1
1.4	Internal treatment methods	1
1.5	External treatment methods- zeolite, ion exchange	1
1.6	Desalination process- reverse osmosis, electrodialysis, multi stage flash	1
1.0	distillation	
1.7	Waste water treatment processes	2
2.0	Spectroscopic technique and applications	
2.1	Introduction	1
2.2	Principles of spectroscopy and selection rules	1
2.3	Electronic spectroscopy, Fluorescence- applications in medicine.	1
2.4	Vibrational and rotational spectroscopy of diatomic molecules-	2
2.4	Applications	
2.5	Nuclear magnetic resonance and magnetic resonance imaging	2

S.No	Topic	No. of Hours
2.6	Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Optical	2
2.0	Emission Spectroscopy- Principle, instrumentation and applications.	
3.0	Electrochemical power system	
	Industrial electrolytic process – Water electrolysis – Hydrogen generator-	2
3.1	Decorative and functional coating-Electroplating Protective coating (Zn and Ni);	
3.2	Value added coatings (Au, Pt).and Electroless process of making printed circuit board	1
3.3	High energy density and Power density batteries-Operational characteristics – Primary (Zn/MnO ₂ or Zn/Ag ₂ O) and Secondary batteries (Pb- acid and Lithium ion/polymer batteries)	2
3.4	Fuel cells – Basic concept and types Proton exchange membrane FC-Methanol FC-solid oxide FC- (principle only)	2
3.5	Advantages and Disadvantages of fuel cell-Hydrogen Economy-Hydrogen storage- Super capacitors – EDLC and Hybrid type (principle only)	2
4.0	Advanced Engineering materials	•
4.1	Dielectric, mechanical and electrical properties-chemical methods for tailoring the properties-Doping-Functionalization-core/shell nanostructure	2
4.2	Conducting polymers – principle and preparation method-conduction mechanism-(conjugated polymers- conjugated doped polymers)	2
4.3	application of polymer and its composites in sensors, light emitting diodes. telecommunications, power transmissions	2
4.4	antistatic coatings, conducting adhesives, artificial nerves - EMI shielding, Frequency selective surfaces	1
4.5	Sensing properties of materials-concept-Applications- Electronic sensors in Environmental monitoring process	2
	Total	36

Course Designers:

Dr.M.Kottaisamy
 Dr..J.Shanmugapriya
 Br.S.Balaji
 bndchem@tce.edu
 shanmugapriya@tce.edu
 Sbalaji@tce.edu

18CHC30 CHEMISTRY (Common to CSE and IT)
--

Category	L	Т	Р	Credit
BS	3	0	0	3

The objective of this course is to bestow the better understanding of basic concepts of chemistry and its applications in Computer Science and Engineering and Information Technology. This course provides exposure on corrosion and its protection in computer components. It also imparts knowledge on properties and application of nano-materials in data storage devices. Besides, it highlights properties of water and its treatment methods, spectroscopic techniques for material characterization, properties and applications of polymers.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO 1.	Identify the properties of water and its treatment methods	Understand
CO 2.	Summarize the principles and instrumentations of spectroscopic	Understand
	techniques	
CO 3.	Select the appropriate spectroscopic techniques for characteristics	Apply
	of materials	
CO 4.	Adapt the suitable corrosion control methods	Apply
CO 5.	Describe the preparation, properties and applications of polymers	Understand
	and nanomaterials.	
		11 1 4 1
CO 6.	Discuss the significance of nanomaterials in computer peripherals	Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	-	-	-	-	-	-	-	-	-	L	-
CO2	М	L	L	-	-	-	-	-	-	-	-	-
CO3.	S	S	М	М	-	-	-	-	-	-	-	-
CO4.	S	S	М	М	-	-	L	-	-	-	L	-
CO5.	М	М	М	М	-	-	L	-	-	-	-	-
CO6.	М	М	М	М	L	-	М	-	-	-	-	-
S- Strong	S- Strong; M-Medium; L-Low											

Assessment Pattern

Bloom's Category	Continuo	us Assessm	Terminal Examination	
bloom's category	1 2 3			
Remember	20	20	20	20
Understand	40	40	40	40
Apply	40	40	40	40
Analyze	-	-	-	-
Evaluate	-	-	-	-
Create	-	-	-	-

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Distinguish between scale and sludge.
- 2. 100 ml of given water sample consumed 48 ml of EDTA during titration using EBT indicator. 35 ml of same EDTA consumed by 100 ml of standard hard water containing 1 mg of pure CaCO₃ per ml. Calculate the permanent, temporary and total hardness of given water samples in CaCO₃ equivalents.
- 3. Outline the steps involved in the waste water treatment process.

Course Outcome 2 (CO2):

- 1. State Beer-Lambert law.
- 2. Write the selection rule in absorption spectroscopy.
- 3. Explain the procedure involved in finding the metals present in an alloy sample using ICP-OES.

Course Outcome 3 (CO3):

 Compare the stretching frequencies of carbonyl functional groups in the following compounds

2. Following Woodward-Fiesher- scott rules, it has been observed that the following compounds have absorption maximum at (i) 225 nm, (ii) 220 (iii) 230. Explain which is which.

3. Describe the function of different magnets available to generate magnetic field in MRI scanner.

Course Outcome 4 (CO4):

- Linear polarisation of steel specimen (0.1 x 0.1 cm²) kept in 4% aqueous NaCl solution is studied. It gives corrosion current I_{corr} = 50 μA/cm². Equivalent weight and density of steel are 55.85 g/mol and 8.05 g/ cm³ respectively. Calculate the rate of corrosion of steel in mm/year.
- 2. Demonstrate causes and control measures of corrosion in computer peripherals and electronic devices.
- 3. Explain the factors influencing rate of corrosion.

Course Outcome 5 (CO5):

- 1. Demonstrate the mechanism of conducting polymer of poly acetylene.
- 2. Explain the application of polymer material application in display devices.
- 3. Compare OLED vs LCD in display properties.

Course Outcome 6 (CO6):

- 1. Recall the classification of nanomaterials
- 2. Explain size dependent properties on nanomaterials
- 3. Describe the role of nanomaterials in data storage devices.

Concept Map CHEMISTRY comprises WATER CHEMISTRY SPECTROSCOPIC TECHNIQUES & ADVANCED ENGINEERING MATERIALS CORROSION IN APPLICATIONS COMPUTER COMPONENTS Describes Deals about Outlines includes Explain Discuss Demonstrate Includes Discuss Describes Polymer Characteristics of Waste Water Types & Corrosion Rate Treatment Methods Corrosion Control Methods Nanomaterials Determination Instrumentation of in Computer Peripherals Spectroscopic Techniques Contains Factors Influencing Internal and External Includes Comprises Corrosion Outlines Treatment of Water Principles of Application of Spectroscopic Techniques Material characterisation Properties & Molecular Weight Classification & **Determination Techniques Properties** Application in Application in computer Data Storage Peripherals & Electronic Devices **Syllabus**

Water Chemistry:

Water- sources-Hardness of water-types-Estimation of hardness of water by EDTA method. Disadvantages of hardwater -Boiler troubles- scale & sludge. Internal treatment methods. External treatment methods- zeolite, ion exchange. Desalination process- reverses osmosis, electrodialysis, multi stage flash distillation. Waste water treatment processes.

Spectroscopic technique and applications:

Principles of spectroscopy and selection rules- Electronic spectroscopy, Fluorescenceapplications in medicine. Vibrational and rotational spectroscopy of diatomic molecules-Applications. Nuclear magnetic resonance and magnetic resonance imaging. Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Optical Emission Spectroscopy-Principle, instrumentation and applications.

Corrosion in computer components:

Introduction -types of corrosion-electrochemical analysis-Polarization and Impedance - Rate of corrosion determination- influencing factors in corrosion-corrosion degradation in computer peripherals, electronic devices -control measures-self protecting corrosion products -Pilling Bed worth rule- precious metal coating and impact-salt spray- electroless plating-Printed Circuit Board (PCB) manufacturing.

Advanced Engineering Materials:

Passed in Board of Studies on 14 07 2018

Polymers – introduction – structure- property relationship of polymer -conducting polymers – properties and applications in biosensors, organic light emitting diodes.Polymers in telecommunications, power transmission and liquid crystalline display devices, flexible electronic devices. Polymer composite—classification and applications in computer components. **Nanomaterials**: Difference between nano and bulk materials- classifications-size dependent properties. Data storage materials – properties and applications.

Text Book

- 1. P.C. Jain and Monica Jain, A Textbook of Engineering Chemistry, DhanpatRai publications, New Delhi, 16th edition, 2015.
- 2. C. N. Banwelland E.M. McCash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill (India), 5th Edition, 2013.

Reference Books

- 1. Shashi Chawla, "A text book of Engineering Chemistry", Dhanpat Rai & Co.(pvt) ltd 3rd edition, reprint 2011.
- 2. Mars Fontana, "Corrosion Engineering, Mc Graw Hill Education 3rd edition reprint, 2017.R.V.Gadag, A. Nityananda Shetty "Engineering Chemistry" I.K. international Publishing Pvt Ltd. 3rd edition 2014.

Course Contents and Lecture Schedule

S. No.	Topic	No. of hour
1.0	Water Technology	
1.1	Introduction -Water- sources-Hardness of water-types	1
1.2	Estimation of hardness of water by EDTA method	2
1.3	Disadvantages of hardwater -Boiler troubles- scale & sludge.	1
1.4	Internal treatment methods	1
1.5	External treatment methods- zeolite, ion exchange	1
1.6	Desalination process- reverse osmosis, electrodialysis, multi stage flash distillation	1
1.7	Waste water treatment processes	2
2.0	Spectroscopic techniques and applications	
2.1	Introduction	1
2.2	Principles of spectroscopy and selection rules	1
2.3	Electronic spectroscopy, Fluorescence- applications in medicine.	1
2.4	Vibrational and rotational spectroscopy of diatomic molecules- Applications	2
2.5	Nuclear magnetic resonance and magnetic resonance imaging	2
2.6	Atomic Absorption Spectroscopy and Inductively Coupled Plasma- Optical Emission Spectroscopy- Principle, instrumentation and applications.	2
3.0	Corrosion in computer components	
3.1	Types of corrosion, Electrochemical analysis – polarisation and impedance	2
3.2	Rate of corrosion determination	1
3.3	Factors influencing corrosion-local heat generation	2
3.4	Corrosion in computer peripherals and electronic devices	1
3.5	Corrosion control methods and precious metal coating	2
3.6	Printed Circuit Board Manufacturing	1

S. No.	Торіс	No. of hour
4.0	Advanced Engineering Materials	
4.1	Polymers - Structure property relationship of polymer	2
4.2	Conducting polymers – synthesis, properties and applications in biosensors and OLED	3
4.3	Polymer composites – classification and applications in computer components.	1
4.4	Nanomaterials – classification and size dependent properties	1
4.5	Properties of Data storage nanomaterials	2
	Total	36

Course Designers:

1.	Dr. M. Kottaisamy	<u>hodchem@tce.edu</u>
2.	Dr. V. Velkannan	velkannan@tce.edu
3.	Dr. S. Sivailango	drssilango@tce.edu

18EG140	ENGLISH	Category	L	Т	Р	Credit
		HSS	2	0	0	2

The course aims at developing communication skills in English essential for understanding and expressing the ideas in different academic, social, and professional contexts. The students acquire the skills of listening, speaking, reading, and writing competencies in English language, making them employable in the globalised scenario.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall the basics of language in terms of vocabulary, grammar, pronunciation, syntax and semantics.	Remember
CO2	Understand the grammatical nuances and use them accordingly in	Understand
CO3	Read and comprehend the content in English in general and technical	Understand
CO4	Write with coherence and cohesion effectively.	Apply
CO5	Apply the language in established structure with precision in social and professional contexts.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1.										S		S
CO2.										S		М
CO3.										S		S
CO4.										S		S
CO5.										S		S

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continu	ous Assessme	nt Tests	Terminal
Bloom's Category	1	2	3	Examination
Remember	-	-	-	-
Understand	15	15	30	30
Apply	35	35	70	70
Analyse	-	-	-	-
Evaluate	-	-	-	-
Create	-	-	-	-

Course Level Assessment Questions

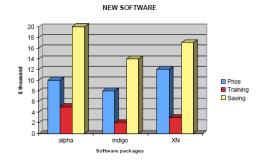
Course Outcomes 1, 2 and 3

- 1. Rewrite as directed.
 - a) Write a basic definition of a "mobile".
 - b)Combine the following sentences to bring out the "Purpose and Function".

The coal gas is compressed. Condensation in the gas mains can be avoided.

- c) Expand the following nominal compounds: i) car race ii) race car
- d) Combine the following sentences using a relative clause.

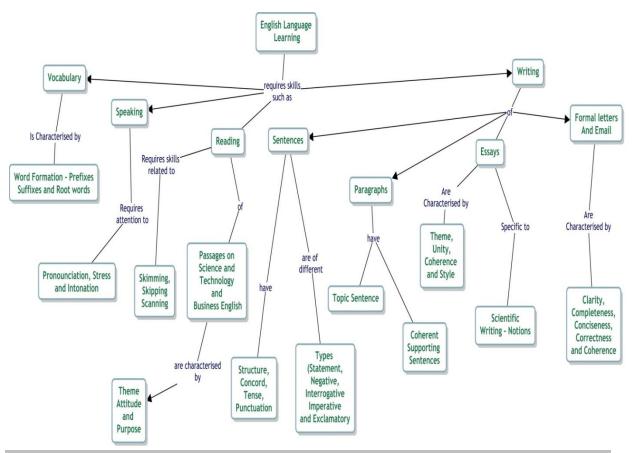
Smart meters are small computers. They provide real-time information on how much electricity is being used by each customer.


- e) Combine the following sentences to bring out the "Cause and Effect" Sand is mixed with the cement. It prevents the excessive shrinkage during drying.
- f) Give the words for the following transcriptions
 - i) /tek npl.ə.dʒi/ ii) /prə nʌnt.si eɪ.ʃən/
- g) Write down the phonetic symbols of the letters underlined. i). **Th**ick ii) Pleasure
- h) Syllabify the word and underline the stressed syllable: Communication
- i) Frame question tags for the following sentence: Don't open your books
- j) Fill in the blank with the correct form of the verb given in brackets.

Tamil Nadu's share of students in the IITs and NITs _____ (register) a considerable drop in the recent years.

- 2. Read the following passage and answer the following (different types of) questions.
 - Descriptive questions for eliciting short answers
 - True or false
 - Sentence Completion
 - Synonyms/meaning of the words in the text

Course Outcomes 4 & 5


- 1. Write a paragraph in about 100-150 words on E-learning
- 2. Write a paragraph in about 100-150 words on Plastics
- 3. Write an e-mail to a company requesting permission to attend in-plant training for a fortnight.
- 4. Draft a letter to a company requesting you to undergo in-plant training there, inventing necessary details, in proper format.
- 5. Prepare a set of 10 instructions on how to draw money from an ATM.
- 6. Prepare a set of 12 recommendations to keep our environment clean.
- 7. Make notes of the passage given in appropriate format with a title and summarize in about 100 words.
- 8. Interpret the following graphic data in about 150 words

9. Write an essay in about 250 words on 'The Impact of Technology on Nature'

10. Write an essay in about 250 words on 'Green Engineering'

Concept Map:

Syllabus:

MODULE-I

Basics of language – Phonetics - Phonemes, Syllables and Stress, Vocabulary – Word Analysis, Prefix, Suffix, Roots, Parts of Speech, Sentence Patterns.

MODULE-II

Basics of grammar – Tenses, Subject-Verb Agreement, Impersonal Passive Voice, Relative Clauses; Notions for Technical English – Noun Compounds, Classifications and Definitions, Cause and Effect, Purpose and Function, Numerical Adjectives, Reading Comprehension – Skimming, Scanning, Skipping (as tested in BEC Vantage Level)

MODULE-III

Writing with coherence and cohesion, Summarizing, Note-Making, Interpretation of Graphics, Writing Instructions and Recommendations, Paragraph and Essay Writing.

MODULE-IV

Writing with correct spelling, punctuation and grammar, Blog writing, E-mail Writing (BEC Vantage Writing-Unit I) – Formal Letters by students for Bonafide Certificate/Permission.

Suggested Reading:

Books:

- 1. Murphy, Raymond, English Grammar in Use with Answers; Reference and Practice for Intermediate Students, Cambridge: CUP, 2004
- 2. Jones, Daniel. An English Pronouncing Dictionary, Cambridge: CUP, 2006

- 3. Brook-Hart, Guy. Cambridge English- Business Benchmark-Upper Intermediate, CUP,2014.
- 4. Dhanavel, S.P. English and Communication Skills for Students of Science & Engineering, Orient BlackSwan, Chennai: 2016.
- 5. Swan, Michael. Practical English Usage.4th Edn. OUP. 2016.

Websites:

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu
- 3. https://www.oxfordonlineenglish.com
- 4. www.bbclearningenglish.com

Course Contents and Lecture Schedule S.No No. of Hours Topic 1. Introduction 2. Sentence Patterns 1 3. Tenses 2 Subject-Verb Agreement 1 Phonetics - Consonants, Vowels, Dipthongs 1 Phonetics - Syllable and Stress 1 6. Word Formation - Prefixes, Suffixes and Root Words 7. 1 Reading Comprehension - I (Skipping, Skimming, and Scanning) 1 8. Note-Making and Summarizing 1 9. 10. Writing Instructions and Recommendations 1 11. Tutorials 1 12. Defining and Non-Defining Relative Clauses 1 13. Impersonal Passive Voice 2 Notions of Technical English – Noun Compounds, Definitions, Cause 1 & Effect, Purpose and Function, Numerical Adjectives Paragraph / Essay Writing- Topic and Supporting Sentences, 15. 2 Coherence 16. E-Mail Writing – (BEC Vantage Writing Task I) 1 17. Formal Letters by students for Bonafide Certificate/Permission 1 18. Interpretation of Graphics 1 19 Reading Comprehension – II (As tested in BEC Writing Task III) 2 20. Tutorials 1 Total 24

Course Designers:

1 Dr. S. Rajaram

2 Dr.A.Tamilselvi

3 Mr. R. Vinoth

4 Dr. R. K. Jaishree Karthiga

sreng@tce.edu tamilselvi@tce.edu vino@tce.edu jai@tce.edu

18ES150	ENGINEERING EXPLORATION	Category	L	Т	Р	Credit
		ES	1	2	•	3

The course Engineering Exploration provides an introduction to the engineering field. It is designed to help the student to learn about engineering and how it affects our everyday lives. On the successful completion of the course, students will be to explain how engineering is different from science and technology and how science, mathematics and technology are an integral part of engineering design.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Explain technological & engineering development, change and impacts	Understand
of engineering	
CO2. Draw a product in enough detail that others can accurately build it and	Apply
write specification sheet for a given product	
CO3. Complete initial steps (Define a problem, list criteria and constraints,	Apply
brainstorm potential solutions and document the ideas) in engineering design	
process	
CO4. Draw sketches to a design problem and provide a trade-off matrix	Apply
CO5. Communicate possible solutions through drawings and prepare project	Apply
report	
CO6. Use reverse engineering to suggest improvements in a tool design	Apply
CO7. Apply the concept of engineering fundamentals in Civil, Mechanical,	Apply
Electrical and Computer Engineering	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	М	L	-	-	-	-	-	-	-	-	-	-
C02	S	М	L	-	-	-	-	-	-	-	-	-
C03	S	М	L	-	-	-	-	-	-	-	-	-
C04	S	М	L	-	-	-	-	-	-	-	-	-
C05	S	М	L	-	-	-	-	-	-	-	-	-
C06	S	М	L	-	-	-	-	-	-	-	-	-
C07	S	М	L	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

Assessment Pattern

S.No	Bloom's category	Contin	uous Asse	End Semester Examinations	
3.110	Bloom's category	1	2	3	Examinations
1	Remember	20	20	20	20
2	Understand	20	20	20	20
3	Apply	60	60	60	60
4	Analyze	0	0	0	0

,	5	Evaluate	0	0	0	0
(6	Create	0	0	0	0

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. What is the role of Engineer?
- 2. How do you believe the growth of engineering has impacted the product that we have today?
- 3. Select an engineering product, list the specifications and constraints that must be considered when designing the product. Make a list of tradeoff.

Course Outcome 2 (CO2):

- 1. List the steps of a design problem.
- 2. Identify the problem you see in the product you used in your daily life.
- 3. Determine the design constraint and criteria for a problem.
- 4. Create an isometric drawing of a design.

Course Outcome 3 (CO3):

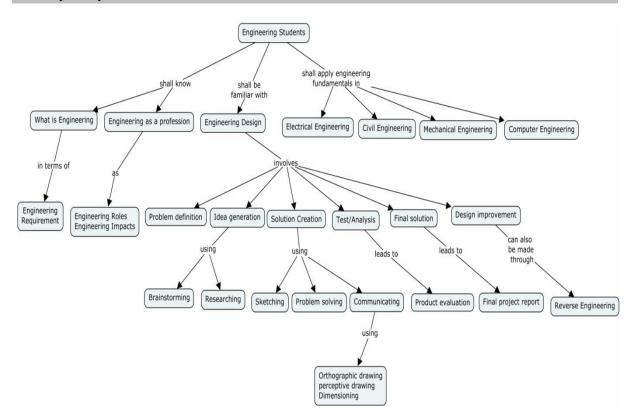
- 1. List the five factors when considering development problem.
- 2. Imagine you have noticed the car you are riding is making a squeaking noise from the engine compartment. Define the problem with your vehicle. Classify the potential problem.
- 3. Imagine you are hired by your local city to develop a new public transportation.
 - a. Define the problem.
 - b. List the criteria and constraint.
 - c. List the potential solution.

Course Outcome 4 (CO4):

- 1. Imagine you are an engineer who is designing a portable sitting device; you need to design a chair that will be portable that will fit in the trunk of the car which hold 100 kg individual and will be easily produced. Create sketches using a four step process to this design problem.
- 2. Imagine you are an engineer who develops method to automatically sort books at college library. Develop possible sketches and list potential solution and give the tradeoff matrix.
- 3. How can your research improve the design?

Course Outcome 5 (CO5):

- 1. What details are able to show with the perspective drawing?
- 2. What is the difference between mockup and prototype?
- 3. List five different question engineers must ask about function of the design.


Course Outcome 6 (CO6):

- 1. Select a product to analyze with respect to function, fit, aesthetics, safety and environment impact. Write a summary on evaluation of the product. If you would like make changes to the design list the changes.
- 2. What design components should be reconsidered in reverse engineering processes? Why?
- 3. What are the benefits of reverse engineering?

Course Outcome 7 (CO7):

- 1. Explain ohms law and list the related formulas.
- 2. What role do you think the range selection plays in the accuracy of the measurements?
- 3. Why it is important for a civil engineer to study structural forces?
- 4. Describe the differences between fluids used in hydraulics and pneumatics.

Concept Map

Syllabus

What is Engineering: Engineering Requirement, Knowledge within Engineering disciplines, Engineering advancements Engineering Design: Problem definition, idea generation through brainstorming and researching, solution creation through evaluating and communicating, text/analysis, final solution and design improvement. Defining problems and Brainstorming: Researching design, sketching problem solving Communicating solution: Dimensioning orthographic drawing, perspective drawing Modeling and Testing final output: Product evaluation, reverse engineering, final project report. Civil Engineering: Structural forces structural analysis, bridge design components, structural design Mechanical Engineering: Types of motion, mechanical power system, mechanical power formula, mechanical design. Electrical Engineering: Reading analog multimeter, measuring current, voltage and resistance, electricity from chemicals, solar cells, magnets, Ohms law and watts law, circuit identification and circuit calculation, resistor color code, continuity Computer Engineering: Logic gates, algorithms, computer architecture, binary code

Reference Books

- 1. Ryan A.Brown, Joshua W.Brown and Michael Berkihiser: "Engineering Fundamentals: Design, Principles, and Careers", Goodheart-Willcox Publisher, Second Edition, 2014.
- 2. Saeed Moaveni, "Engineering Fundamentals: An Introduction to Engineering", Cengage learning, Fourth Edition, 2011.

Course	CC	ontents	ana	Lecture	Scheau	le

No.	Topic	No. of
		Lectures
1.	What is Engineering	
1.1	Engineering Requirement	1
1.2	Knowledge within Engineering disciplines,	1
1.3	Engineering advancements	1
2	Engineering Design	
2.1	Problem definition,	1
2.2	idea generation through brainstorming and researching	1
2.3	solution creation through evaluating and communicating,	1
2.4	text/analysis	1
2.5	final solution and design improvement	1
3	Defining problems and Brainstorming:	
3.1	Researching design	1
3.2	sketching problem solving	2
4	Communicating solution	
4.1	Dimensioning orthographic drawing	1
4.2	perspective drawing	1
5	Modeling and Testing final output	
5.1	Product evaluation	1
5.2	reverse engineering	1
5.3	final project report	1
6	Civil Engineering	
6.1	Structural forces structural analysis	2
6.2	bridge design components	2
6.3	structural design	1
7	Mechanical Engineering	
7.1	Types of motion	2
7.2	mechanical power system	1
7.3	mechanical power formula	1
7.4	mechanical design	1
8	Electrical Engineering:	
8.1	Reading analog multimeter, measuring current, voltage and	1
	resistance	
8.2	electricity from chemicals, solar cells, magnets,	1
8.3	Ohms law and watts law, circuit identification and circuit calculation	1
8.4	resistor color code, continuity	2

No.	No. Topic	
9	Computer Engineering	
9.1	Logic gates, algorithms,	1
9.2	computer architecture,	2
9.3	binary code	2
	Total	36

Course Designers:

Dr.S.J. Thiruvengadam
 Dr. S.Baskar
 <u>sitece@tce.edu</u>
 <u>sbeee@tce.edu</u>

		Category	L	Т	Р	Credit
18ME160	ENGINEERING GRAPHICS	ES	3	0	2	4

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product designs through drawings and in reading or understanding existing drawings. This course covers orthographic and pictorial projections, sectional views, development of surfaces and use of computer aided drafting tools.

Prerequisite

NIL

Course Outcomes

On successful completion of the course, students will be able to

CO1	Draw conic Sections such as ellipse, parabola, hyperbola and rectangular hyperbola.	Apply
CO2	Draw the orthographic projections (Elevation and Plan) of straight lines inclined to both reference planes.	Apply
CO3	Draw the orthographic projections (Elevation, Plan and End view) of plane surfaces inclined to both reference planes	Apply
CO4	Draw the orthographic projections (Elevation and Plan) of regular solids (Prisms, Pyramids, Cylinder and Cone) with axis inclined to any one reference plane.	Apply
CO5	Draw the orthographic projections (Elevation and Plan) of sectioned solids (Prisms, Pyramids, Cylinder and Cone) with axis perpendicular to horizontal plane and true shape of the sections.	Apply
CO6	Draw the development of surfaces (base and lateral) of sectioned regular solids (Prisms, Pyramids, Cylinder and Cone).	Apply
CO7	Draw the isometric projections of regular solids and combined solids (Prisms, Pyramids, Cylinder, Cone and sphere) and of solid parts from the orthographic views.	Apply
CO8	Develop computer-aided 3D models for the given part drawing (2D/3D) and draw orthographic views for the 3D model with appropriate dimensioning using CAD package. (Continuous Assessment only)	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1.	S	М	S	М	М	_	_	_	М	М	_	-
CO2.	S	М	S	М	М	_	_	_	М	М	_	_
CO3.	S	М	S	М	М	_	_	_	М	М	_	-
CO4.	S	М	S	М	М	_	_	_	М	М	_	_
CO5.	S	М	S	М	М	_	_	_	М	М	_	_
CO6.	S	М	S	М	М	_	_	_	М	М	_	_
CO7.	S	М	S	М	М	_	_	_	М	М	_	_
CO8.	S	М	S	М	S	_	_	_	М	М	_	_

Assessment Pattern		
Bloom's Category	Continuous Assessment Test	Terminal Examination
Remember	0	0
Understand	0	0
Apply	100	100
Analyse	0	0
Evaluate	0	0
Create	0	0

Course Level Assessment Questions

Course Outcome 1 (CO1)

- 1. Draw an ellipse if the distance of focus from the directrix is 70 mm and the eccentricity is 3/4.
- 2. Draw a parabola if the distance of focus from the directrix is 60 mm.

Course Outcome 2 (CO2)

- 2. One end "A" of a straight line AB 85 mm long is 10 mm above HP and 15 mm in front of VP. The line is inclined to HP at 40° and inclined to VP at 30°. Draw the projections.
- 3. A line CD has its end "C" 20 mm above HP and 25 mm in front of VP. The other end "D" is 45 mm above HP and 40 mm in front of VP. The distance between the end projectors is 60 mm. Draw its projections and find its true length.

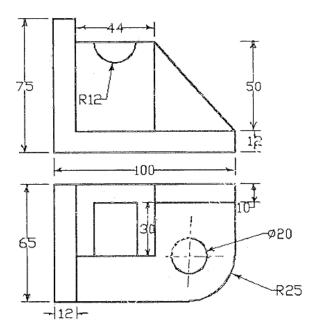
Course Outcome 3 (CO3)

- 1. A semi circular plate of 80 mm diameter has its straight edge on V.P and inclined at 30° to H.P. The surface of the plate is inclined at 45° to V.P. Draw the projections of the plate.
- 2. A thin rectangular plate of 60 x 40 mm size has its shorter edge on H.P and inclined 30° to V.P. Draw the projections of the plate when its top view is a square of 40 mm side.

Course Outcome 4 (CO4)

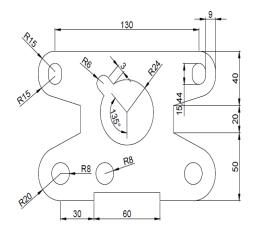
- 1. A hexagonal prism of side of base 35 mm and axis length 80 mm rests on HP on one of its rectangular faces such that its axis is inclined to VP by 45°. Draw its elevation and plan.
- 2. A square pyramid of base side 40 mm and axis 75 mm long is resting on one of its base edges in such a way that one of its triangular faces is perpendicular to both HP and VP. Draw its front view and top view.

Course Outcome 5 (CO5)

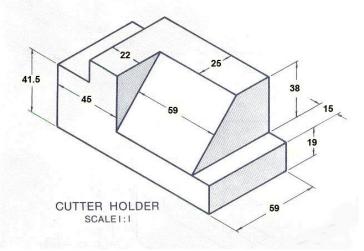

- 1. A cone of base 75 mm diameter and axis 80 mm long is resting on its base on H.P. It is cut by a section plane perpendicular to VP, inclined at 45° to H.P and cutting the axis at a point 35 mm from the apex. Draw the front view, sectional top view and true shape of the section.
- 2. A hexagonal pyramid, base 30 mm side and axis 65 mm long is resting on its base on HP with two edges of the base parallel to V.P. It is cut by a section plane perpendicular to V.P and inclined 45° to H.P, intersecting the axis at a point 25 mm above the base. Draw the front view, sectional top view and true shape of the section.

Course Outcome 6 (CO6)

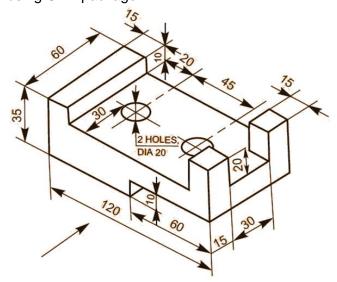
- A cone of base diameter 60 mm and axis 70 mm long is resting on its base on H.P. A section plane perpendicular to H.P and V.P cuts the cone at a distance of 10 mm from the axis. Draw the development of the cut solid.
- 2. A pentagonal prism of base side 30 mm and axis height 75 mm is resting on its base on HP such that rectangular face is parallel to V.P. It is cut by a cutting plane perpendicular to V.P and 30° inclined to H.P. It meets the axis 15 mm below the top base. Draw the development of the cut prism.


Course Outcome 7 (CO7)

- 1. Draw the isometric projection of hexagonal prism of base side 40 mm and height 60 mm with a right circular cone of base diameter 50 mm and altitude 50 mm resting on its top such that the axes of both solids are collinear and vertical.
- 2. Draw the isometric view of the part with the following orthographic views.



Course Outcome 8 (CO8)


1. Develop a 2D model using CAD package for the given figure.

2. Develop a 3D model using CAD package for the given part drawing.

2. Draw the orthographic views for the given 3D model with appropriate dimensioning using CAD package.

Customization

Concept Map Engineering Graphics involves Manual Drawing Computer Aided Drafting (CAD) comprises of Conic sections comprises of Isometric Projections Team design project Orthographic projections of Different menus points, lines, planes, solids Development of surfaces Annotations, layering Sections of solids and

Syllabus

Introduction- Significance of engineering graphics, Use of drawing instruments –Standards, Lettering, numbering and dimensioning, Principles of orthographic projections, First angle projection, Scales.

Conic Sections - Construction of ellipse, parabola, hyperbola (Eccentricity Method only) and rectangular hyperbola.

Projection (Elevation and Plan) of points located in all quadrants.

true shape of the section

Projection (Elevation and Plan) of straight lines inclined to both reference planes - Determination of true lengths and true inclinations by rotating line method.

Projection (Elevation, Plan and End view) of planes inclined to both reference planes by rotating object method.

Projection (Elevation and Plan) of regular solids (Prisms, Pyramids, Cylinder and cone) by rotating object method when the axis is inclined to one of the reference planes.

Projection (Elevation and Plan) of sectioned solids (Prisms, Pyramids, Cylinder and cone) and true shape of the sections, when the axis of the solid is perpendicular to horizontal plane. **Development of surfaces** (base and lateral) **of sectioned regular solids** (Prisms, Pyramids, Cylinder and Cone).

Isometric projection – Principle, isometric scale, Isometric views and Isometric projections of single solid and combined solids (Prisms, Pyramids, Cylinder, Cone and sphere) when the axis is vertical. **Conversion of orthographic projections** (Elevation, Plan and End view) of solid parts / engineering components into isometric view.

Computer Aided Drafting (For Continuous Assessment only):

Overview of Computer Graphics, list of computer technologies, impact on graphical communication. Demonstrating knowledge of the theory of CAD software such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus

(Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects. Setting up of units and drawing limits.

Drawing geometric entities such as lines, arcs and circles in isometric views. Development of 3D wire-frame and shaded models. Dimensioning – Guidelines – ISO and ANSI standards for coordinate dimensioning - Defining local coordinate systems – Dimensioning in iso-metric and orthographic views.

Text Book

1. Bhatt N.D., Panchal V.M. and Ingle P.R., (2014) "Engineering Drawing", Charotar Publishing House.

Reference Books

- 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008
- 3. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 4. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 5. Shah M.B, and Rana B.C (2008) "Engineering Drawing and Computer Graphics", Pearson Education.
- 6. (Corresponding set of) CAD Software Theory and User Manuals.

Course Contents and Lecture Schedule

SI.No	Topic	Lecture Hours	Practice Hours
1	Introduction - Significance of engineering graphics, Use of drawing instruments –Standards, Lettering, numbering and dimensioning, Principles of orthographic projections, First angle projection, Scales.	2	1
2	Conic Sections - Construction of Ellipse, Parabola, hyperbola and rectangular hyperbola (Eccentricity Method only).	2	3
3	Projection (Elevation and Plan) of points located in all quadrants.	2	1
4	Projection (Elevation and Plan) of straight lines inclined to both reference planes - Determination of true lengths and true inclinations by rotating line method.	4	2
5	Projection (Elevation, Plan and End view) of planes inclined to both reference planes by rotating object method.	5	2
6	Projection (Elevation and Plan) of regular solids (Prisms, Pyramids, Cylinder and cone) by rotating object method when the axis is inclined to one of the reference planes.	5	3
7	Projection (Elevation and Plan) of sectioned solids (Prisms, Pyramids, Cylinder and cone) and true shape of the sections, when the axis of the solid is perpendicular to horizontal plane.	4	2
8	Development of surfaces (base and lateral) of sectioned regular solids (Prisms, Pyramids, Cylinder and Cone).	4	2
9	Isometric projection – Principle, isometric scale, Isometric views and Isometric projections of single solid and combined	4	2

	TOTAL	36	24
	10.2 Drawing geometric entities such as lines, arcs and circles in isometric views. Development of 3D wire-frame and shaded models. Dimensioning – Guidelines – ISO and ANSI standards for coordinate dimensioning - Defining local coordinate systems – Dimensioning in iso-metric and orthographic views.	3	5
10	Computer Aided Drafting (For Continuous Assessment only): 10.1 Overview of Computer Graphics, list of computer technologies, impact on graphical communication. Demonstrating knowledge of the theory of CAD software such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects. Setting up of units and drawing limits.	1	1
	solids (Prisms, Pyramids, Cylinder, Cone and sphere) when the axis is vertical. Conversion of orthographic projections (Elevation, Plan and End view) of solid parts / engineering components into isometric view.		

Question Pattern for Terminal Examination

Question Number	Description	Marks	
1	Conic sections	Either or type	10
2	Projection of lines	Either or type	15
3	Projection of planes	Either or type	15
4	Projection of solids	Either or type	15
5	Section of solids	Either or type	15
6	Development of surfaces	Either or type	15
7	Isometric projections of combined solids Or Orthographic views to isometric view	Either or type	15
	100		

Marks Allocation for Continuous Assessment:

SI. No	Description	Marks
1	Plates (Drawing sheets) submission	20
2	Computer Aided Drafting (CAD) Exercises	15
3	Continuous Assessment Test (CAT)	15
	Total	50

Note:

- 1. One test or two tests will be conducted locally by respective faculty-in- charge during regular class hours to account for continuous assessment test (CAT) marks.
- 2. Terminal examination (3 hrs) will be conducted centrally by the office of controller of examinations.

Course Designers

Dr. A.Samuel Raja
 Prof. M.Kannan

samuel1973@tce.edu mknmech@tce.edu

18EG170	ENGLISH LABORATORY	Category	L	Т	Р	Credit
		HSS	0	0	2	1

This practical course enables the students to develop and evaluate their basic English language skills in Language Lab, equipped with English Software, through individualized learning process and immediate feedback, and facilitates students with the need-based student-centric presentation sessions in a multi-media driven classroom environment.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Pronounce words intelligibly through listening and watching contents on social, technical and day-to-day conversations and respond to questions related to them	Apply
CO2	Apply appropriate lexicon in various contexts, by differentiating variations pertaining to spelling, pronunciation, meaning and grammar	Apply
CO3	Comprehend passages on various topics like general, business and science at various levels	apply
CO4	Read texts in newspapers, magazines, and articles on a variety of issues with clarity to understand and to be understood	Apply
CO5	Prepare and present on a topic to a group of audience with ICT and other educational aids	Apply

Mapping with Programme Outcomes

CO	РО	PO1	PO1	PO1								
s	1	2	3	4	5	6	7	8	9	0	1	2
CO										S		S
1												
CO										S		M
2												
CO										S		S
3												
CO										S		M
4												
CO										S		S
5												

Assessment Pattern

Internal: No Continuous Assessment Test will be conducted

Students' performance will be assessed in the classroom as given below

• Spoken Task - General / Technical Presentation / BEC Speaking Tests II: 25 Marks

Listening Task - Answering questions

: 25 Marks

External: Tested on Phonetics, Grammar, and Vocabulary in the lab for 1 hour

: 80 Marks

Submission of Students Record on Practical Tasks in the Class and Lab: 20 Marks

List of Experiments					
S.No	Topic	Hours			
	LAB ACTIVITES				
1	Listening	2			
2	Vocabulary	2			
3	Grammar	2			
4	Phonetics	2			
5	Reading Comprehension – I (General)	2			
6	Reading Comprehension – II (BEC Vantage Level)	2			
	CLASSROOM ACTIVITIES				
7	Reading Practice (Extensive Reading)	2			
8	English through Audios & Videos (Note-Taking & answering questions)	2			
9	Presentation - I	2			
10	Presentation - II	2			
11	Revision	2			
12	Model Test	2			
	Total	24			

Software Used:

- 1. Business English Certificate-Vantage- Practice Software
- 2. English Software

Extensive Reading: (Not for Terminal Exam, Prescribed only for Spoken Tasks)

1. Khera, Shiv, You Can Win, Macmillan Books, New York, 2003.

Teaching Resources and Websites:

- 1. Oxford / Cambridge Online English Videos
- 2. Free Video Downloads from Youtube
- 3. https://learningenglish.voanews.com/
- 4. https://www.ted.com/talkshttp://
- 5. www.esl-galaxy.com/video.htm

Course Designers:

1Dr. S. Rajaramsreng@tce.edu2Dr.A.Tamilselvitamilselvi@tce.edu3Mr. R. Vinothvino@tce.edu4Dr. R. K. Jaishree Karthigajai@tce.edu

18PH180	PHYSICS LABORATORY
10111100	

Category	L	Т	Р	Credit
BS	0	0	2	1

This course ensures that students learn to apply the basic physics concepts and carry out the experiments to determine the various physical parameters related to the material

- Learn the necessary theory to understand the concept involved in the experiment.
- Acquire the skills to carry out the experiment.
- Tabulate the observed data and use the formula to evaluate the required quantities.
- Plot the data in a graph and use it for calculation.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Analyze mechanical ,electrical oscillations and determine their	Apply						
	resonance frequency							
CO2	Analyze the diffraction and interference patterns for characterization							
CO3	Determine the numerical aperture and bending loss in optical fiber							
CO4	Determine the Planck's constant by using LEDs							
CO5	Plot the VI characteristics of solar cell							
CO6	Determine the time constant of an RC circuit							
CO7	Determine the reversibility of classical and quantum logic gates							

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	-	-	-	-	-	-	-	-
CO2	S	S	S	S	-	-	-	-	-	-	-	-
CO3	S	S	S	S	-	-	-	-	-	-	-	-
CO4	S	S	S	S	-	-	-	-	-	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	-
CO6	S	S	S	S	-	-	-	-	-	-	-	-
CO7	S	S	S	S	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

List of Experiments

OSCILLATIONS AND WAVES

- 1. Torsion pendulum- Determination of Moment of inertia of a disc
- 2. Compound pendulum –Determination of acceleration due to gravity

OPTICS

- 3. Spectrometer-Determination of Refractive index of the material of the prism.
- 4. Laser Diffraction Determination of wavelength of Laser and particle size in a thin film.
- 5. Air wedge –Determination of diameter of wire by interference principle.
- 6. Fiber optics-Determination of numerical aperture and bending losses.

QUANTUM MECHANICS

- 7. Photoelectric effect-Determination of Planck's constant
- 8. Solar cell-Plotting and studying of V-I characteristic
- 9. Study of Classical and quantum Logic gates.

ELECTROMAGNETIC THEORY

- 10. RC circuit –Determination of time constant
- 11. LCR Circuit- Determination of resonant frequency

Course Designers:

1.	Dr. R. Vasuki	rvphy@tce.edu
2.	Dr. M.Mahendran	mmphy@tce.edu
3.	Mr. V.Veeraganesh	vvgphy@tce.edu
4.	Dr. A.L.Subramaniyan	alsphy@tce.edu
5.	Dr.D.Ravindran	drphy@tce.edu

18CH190	CHEMISTRY LABORATORY	Category	L	Т	Р	Credit
		BS	0	0	2	1

Preamble

This course aims to provide the students, a basic practical knowledge in chemistry. The objective of this course is to develop intellectual and psychomotor skills of the students by providing hands on experience in quantitative, electrochemical and photo-chemical analysis.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Estimate the chemical water quality parameters of sample water	Apply
CO2	Demonstrate the rate of corrosion of steel by weight loss method	Apply
CO3	Estimate the strength of acidic solution and pH of soil by conductometric and	Apply
	pH metric titrations	
CO4	Illustrate the strength of oxidisable materials present in given sample by	Apply
	potentiometric method	
CO5	Adapt colorimetric method for determination of iron in water	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	S	М	-	-	-	L	-	L	-	-	-
CO2	S	S	М	-	-	-	L	-	L	-	-	-
CO3	S	S	М	-	-	-	L	-	М	-	-	-
CO4	S	М	-	-	-	-	-	-	-	-	-	-
CO5	S	S	M	-	-	-	L	-	-	-	-	-

List of Experiments

A. Quantitative analysis

- 1. Estimation of Total hardness of water
- 2. Estimation of Ca2+ and Mg2+ individual hardness of water samples
- 3. Estimation of alkalinity of water sample
- 4. Estimation of COD of industrial effluent
- 5. Estimation of Chloride in a water sample
- 6. Estimation of rate of corrosion of steel by weight loss method

B. Electrochemical and photochemical analysis

- 1. Conductometry Titration (Strong acid vs Strong base)
- 2. Potentiometric redox Titration (K₂Cr₂O₇ vs FAS, KMnO₄ vs FAS)
- 3. Determination of pH of soil by pH metric titration
- 4. Estimation of iron content of water sample using colorimeter

Course Designers:

Dr. M. Kottaisamy	hodchem@tce.edu
Dr. K. Radha	krchem@tce.edu
Dr. J. Shanmugapriya	shanamugapriya@tce.edu
Dr. S. Rajkumar	rajkumarsubramanian@tce.edu
Dr. S. Balaji	sbalaji@tce.edu
Dr. V. Velkannan	velkannan@tce.edu
Dr. S. Sivailango	drssilango@tce.edu
Dr. M. Velayudham	mvchem@tce.edu

CURRICULUM AND DETAILED SYLLABI

FOR

B.E. EEE DEGREE PROGRAMME

SECOND SEMESTER

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING

(A Government Aided ISO 9001:2008 certified Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. EEE Degree Programme

COURSES OF STUDY

(For the candidates admitted from 2018-19)

SECOND SEMESTER

Course	Name of the Course	Category	No	o. of H	lours	Credits				
Code				/ We	ek					
			L	Т	Р					
THEORY										
18MA210	Matrices and Ordinary Differential	BS	3	-	-	3				
	Equations									
18EE220	Materials Science for Electrical	ES	3	-	-	3				
	Engineering									
18EE230	Electric Circuit Analysis	PC	3	-	-	3				
18EE240	Electromagnetic fields	PC	2	1	-	3				
18EE250	Electronic Devices and Circuits	PC	3	-	-	3				
PRACTICA	L	I	l .							
18EE270	Electronic Devices and Circuits Lab	PC	-	-	2	1				
18EE280	Electrical Workshop	ES	-	-	2	1				
18ES290	Lateral Thinking	ES	-	-	2	1				
	Total	I	l .			18				
MANDATO	RY AUDIT COURSES									
18CHAA0	Environmental Science	AC	1	-	1	-				

BS : Basic Science

ES : Engineering Science
PC : Programme Core
PE : Programme Elective

L : Lecture
T : Tutorial
P : Practical

Note:

1 Hour Lecture/week is equivalent to 1 credit

1 Hours Tutorial/week is equivalent to 1 credit

2 Hours Practical/week is equivalent to 1 credit

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI - 625 015

B.E. EEE Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2018-19onwards)

SECOND SEMESTER

S.No.	Course Code	Name of the Course	Duration of		Marks		Minimum for Pa	ass
			Terminal	Contin	Termin	Max.	Terminal	Total
			Exam. in	uous	al	Mark	Exam	
			Hrs.	Asses	Exam	S		
				sment				
				*				
THEOR		T	T					
1	18MA210	Matrices and	3	50	50	100	25	50
		Ordinary						
		Differential						
	4055000	Equations	0	50	F0	400	0.5	50
2	18EE220	Materials Science	3	50	50	100	25	50
		for Electrical						
3	18EE230	Engineering Electric Circuit	3	50	50	100	25	50
٥	1000230		3	50	50	100	25	50
4	18EE240	Analysis Electromagnetic	3	50	50	100	25	50
4	10LL240	fields	3	30	30	100	23	30
5	18EE250	Electronic Devices	3	50	50	100	25	50
	1022200	and Circuits			00	100	20	00
PRACT	ICAL	and on out	I					
6	18EE270	Electronic Devices	3	50	50	100	25	50
		and Circuits Lab						
7	18EE280	Electrical Workshop	3	50	50	100	25	50
8	18ES290	Lateral Thinking	-	50	50	100	25	50
MANDA	TORY AUDIT	COURSES						
9	18CHAA0	Environmental	-	50	50	100	25	50
		Science					_	

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

18MA210	MATRICES AND ORDINARY DIFFERENTIAL EQUATIONS	Category	L	Т	Р	Credit
101117 12 10		BS	3	0	0	3

Preamble

In engineering, particularly Solid Mechanics, Aerodynamics, Fluid Flow, Heat Flow and Robotics have application that requires an understanding of Vector Calculus and Differential Equations. Also Mathematical tool Laplace Transforms is very much essential to solve ordinary differential equations that occur in the above areas. Eigen values and Eigenvectors are extremely important while creating engineering models in control systems, designing bridges, communication systems and searching algorithms. The course is designed to impart the knowledge and understanding of the above concepts to all Engineers and apply them in their areas of specialization.

Prerequisite

18MA110 Engineering Calculus

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage in %
CO1	Compute the Laplace transform and inverse Laplace transform of different functions	10%
CO2	Solve the given initial value problem using Laplace transform	15%
CO3	Apply matrix algebra techniques for transformations of conic sections into principle axes	25%
CO4	Solve the model developed for the given system using ordinary differential equation	25%
CO5	Compute divergence and curl of vector functions	10%
CO6	Apply the concepts of vector differentiation and vector integration to fluid flow and heat transfer problems	15%

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components
	Proficiency	Cognitive	Affective	Psychomotor	
	Scale	_		-	
CO1	TPS2	K2	A2	-	1.1
CO2	TPS3	K3	A3	-	1.1
CO3	TPS3	K3	A3	-	1.1
CO4	TPS3	K3	A3	-	1.1
CO5	TPS2	K2	A2	-	1.1
CO6	TPS3	K3	A3	-	1.1

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1.	S	М			-	-	-	-		-	-	
CO2.	S	S	S		-	-	-	-	М	-	-	М
CO3.	S	S		S	-	-	-	-		-	-	S
CO4.	S	S	S	S	-	-	-	-	М	-	-	М
CO5.	S	М										
CO6.	S	S	S									

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels		ntinuous sessmen		Assigr	nment	Terminal Examination	
	1	2	3	1	2	3	
Remember	10	10	10				10
Understand	30	30	30				20
Apply	60	60	60	100	100	100	70
Analyse	00	00	00				00
Evaluate	00	00	00				00
Create	00	00	00				00

Sample Questions for Course Outcome Assessment**

Course Outcome 1

- **1.** Show that Laplace transform of $\frac{1}{\sqrt{t}}$ is $\frac{\sqrt{\pi}}{s}$.
- **2.** Identify the inverse Laplace transform of $\log \left(\frac{s^2 + 1}{(s-1)^2} \right)$.
- 3. Discuss any three properties of Laplace transforms.

Course Outcome 2

- **1.** Apply Laplace transform solve $y''+9y=\delta\left(t-\frac{\pi}{2}\right)$, y(0)=2, y'(0)=0.
- **2.** By using Laplace transform, solve $x''(t) + 3x'(t) + 2x(t) = 2(t^2 + t + 1)$; with x(0) = 2, x'(0) = 0.
- **3.** Apply convolution theorem, Solve the Voltera integral equation of the second kind $y(t) \int_0^t y(\tau) \sin(t-\tau) d\tau = t$.

Course Outcome 3

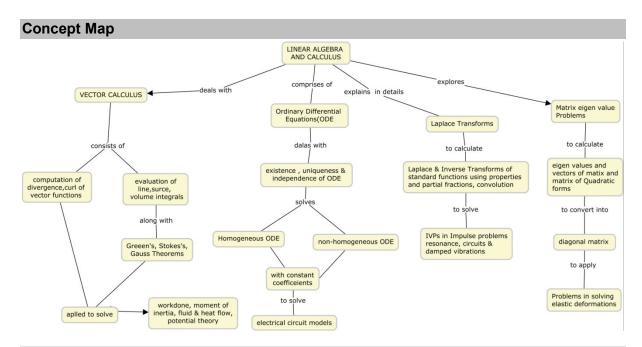
1. An elastic membrane in the x_1 x_2 plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so that a point P; (x_1, x_2) goes over into the point Q; (y_1, y_2) given by $y_1 = 5x_1 + 3x_2$ $y_2 = 3x_1 + 5x_2$

Find the principal directions that is the directions of the position vector X of P for which the direction of the position vector Y of Q is the same or exactly opposite.

Predict the boundary circle take under this deformation?

- **2.** Discover the type of conic section the following quadratic form represents and transform it to principal axes: $Q = 17x_1^2 30x_1x_2 + 17x_2^2 = 128$.
- 3. Diagonalize the matrix $\begin{bmatrix} 6 & 0 & 0 \\ 12 & 2 & 0 \\ 21 & -6 & 9 \end{bmatrix}$

Course Outcome 4


- **1.** Reduce to first order and solve y''-y'=0
- **2.** Compute the general solution for $y'' + y' + (\pi^2 + 1/4)y = e^{-x/2} \sin \pi x$
- **3.** Solve $(x^2D^2 4xD 6)y = c$

Course Outcome 5

- **1.** Predict the value of $div(curl\vec{F})$
- **2.** If ϕ_1 and ϕ_2 are scalar point functions and \overrightarrow{F} is a vector point function such that $\phi_1 \overrightarrow{F} = \nabla \phi_2$ then identify $\overrightarrow{F}.curl \overrightarrow{F}$.
- **3.** Estimate \overrightarrow{curlv} , where $\overrightarrow{v} = [e^{-z^2}, e^{-x^2}, e^{-y^2}]$.

Course Outcome 6

- **1.** Predict the work done by the force $\vec{F} = [y^2, -x^2]$ acting on a particle in $y = 4x^2$ from (0,0) to (1,4).
- 2. Compute the amount of fluid that crosses the surface in a flow per unit time at any one instant, if the velocity field is $\vec{v} = y\vec{i} + x\vec{j} + z\vec{k}$ over the boundary of the region enclosed by the paraboloid $z = 1 x^2 y^2$ and the plane z = 0.
- **3.** Apply Stokes theorem to compute $\int_C \vec{F} \cdot \vec{r'} ds$ where $\vec{F} = [y, xz^3, -zy^3]$ and C is circle $x^2 + y^2 = 4, z = -3$

Syllabus

LAPLACE TRANSFROMS: Laplace transform, Linearity, First Shifting theorem – Transforms of derivatives and integrals, ODEs – Unit step function, Second shifting theorem – Short Impulses, Dirac's delta function, partial fractions – Convolution, Integral Equations – Differentiation and integration of transforms. MATRIX EIGEN VALUE PROBLEM: The Matrix Eigen value Problem, Determining Eigenvalues and Eigenvectors – Some Applications of Eigen value Problems – Symmetric, Skew symmetric and orthogonal matrices – Eigen bases, Diagonalization, Quadratic forms. ORDINARY DIFFERENTIAL EQUATION: Homogeneous Linear ODEs of second order – Homogeneous Linear ODEs with constant coefficients – Euler Cauchy Equation – Existence and uniqueness of solutions, Wronskian - Nonhomogeneous ODE – Modelling: Electric Circuits- Solution by Variation of Parameters. VECTOR CALCULUS: Divergence of a Vector Field- Curl of a Vector Field-Line Integrals- Path independence of line integrals- Green's Theorem in the plane- Surface Integrals- Triple Integrals, Divergence Theorem of Gauss- Applications of the Divergence Theorem- Stoke's Theorem.

Learning Resources

- 1. Erwin Kreszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2017.
 - a. Laplace transforms : [sections 6.1,6.2,6.3,6.4,6.5,6.6]
 - b. Matrix eigen value problem : [sections 8.1,8.2,8.3,8.4]
 - c. Ordinary differential equations: [sections 2.1,2.2,2.5,2.6,2.7,2.9,2.10]
 - d. Vector calculus : [sections 9.8.9.9,10.1,10.2,10.4,10.6, 10.7,10.8,10.9]
- 2. Peter V.O'Neil, "Advanced Engineering Mathematics", 7th edition, Cengage Learning, 2017.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", Pearson Education, New Delhi, 2016.
- 4. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.

5. Made Easy Team, Engineering Mathematics, Made Easy Publications, 2018.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	ТОРІС	Hours	Outcome
1.	LAPLACE TRANSFORMS	Tiouis	Outcome
1.1	Laplace Transform. Linearity. First Shifting Theorem (s-	2	CO1
1.1	Shifting)	2	CO1
1.2	Transforms of Derivatives and Integrals. ODEs	2	CO2
1.3	Unit Step Function (Heaviside Function).	1	CO1
	Second Shifting Theorem (t-Shifting)		
1.4	Short Impulses. Dirac's Delta Function. Partial Fractions	1	CO1
1.5	Convolution. Integral Equations	2	CO2
1.6	Differentiation and integration of transforms	1	CO1
2	MATRICES EIGEN VALUE PROBLEMS		
2.1	Determining Eigenvalues and Eigenvectors	2	CO3
2.2	Some Applications of Eigenvalue Problems	1	CO3
2.3	Symmetric, Skew-Symmetric, and Orthogonal Matrices	2	CO3
2.4	Eigenbases. Diagonalization.	2	CO3
2.5	Quadratic Forms	2	CO3
3	ORDINARY DIFFERENTIAL EQUATION		
3.1	Homogeneous Linear ODEs of Second Order	2	CO4
3.2	Homogeneous Linear ODEs with Constant Coefficients	1	CO4
3.3	Euler–Cauchy Equations	1	CO4
3.4	Existence and Uniqueness of Solutions. Wronskian	1	CO4
3.5	Nonhomogeneous ODEs	2	CO4
3.6	Solution by Variation of Parameters	2	CO4
4	VECTOR CALCULUS		
4.1	Divergence and Curl of a Vector Field	2	CO5
4.2	Line Integrals	2	CO6
4.3	Green's Theorem in the Plane	1	CO6
4.4	Surface Integrals	1	CO6
4.5	Triple Integrals. Divergence Theorem of Gauss	1	CO6
4.6	Applications of the Divergence Theorem	1	CO6
4.7	Stoke's Theorem	1	CO6
	TOTAL No. of Hours	36	

Course Designers

Dr.V.Gnanaraj - <u>vgmat@tce.edu</u>
 Dr.S.Jeyabharathi - <u>sjbmat@tce.edu</u>
 Dr.G.Jothilakshmi - <u>gilmat@tce.edu</u>
 Dr.C.S.Senthil kumar - <u>kumarstays@tce.edu</u>
 Dr.R.Suresh - <u>vgmat@tce.edu</u>
 <u>sjbmat@tce.edu</u>
 <u>kumarstays@tce.edu</u>
 <u>suresh080183@tce.edu</u>

MATERIALS SCIENCE FOR ELECTRICAL ENGINEERS

Category	L	Т	Р	Credit
ES	3	0	0	3

Preamble

The course work aims in imparting fundamental knowledge of materials science required for electrical engineers. The course work will introduce engineers to different types of conductors, semiconductors and dielectrics. The recent magnetic materials, Solar cell materials, superconductors and smart materials will be discussed.

Prerequisite

Basic course (No prerequisite)

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Compute the electrical properties of metals based on classical ,quantum and band theory of solids.	15%
CO2	Explain the basic properties of semiconductor based on carrier concentration and generation.	15%
CO3	Use the knowledge of semiconductors for fabrication of optoelectronic devices.	10%
CO4	Explain the mechanisms of polarisations and different types of dielectrics	15%
CO5	Explain the behaviour of dielectrics with increasing frequency and temperature	15%
CO6	Compute the magnetic properties of different magnetic materials.	15%
CO7	Explain the properties and application of new engineering materials like nano materials ,smart material and superconductors.	15%

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learr	ning Domaii	n Level	CDIO Curricular Components
#	Proficiency	Cognitive	Cognitive Affective		(X.Y.Z)
	Scale				, ,
CO1	TPS3	Apply	Value		1.1

CO2	TPS2	Understand	Respond	1.1
CO3	TPS3	Apply	Value	1.1
CO4	TPS2	Understand	Respond	1.1
CO5	TPS3	Understand	Respond	1.1
CO6	TPS3	Apply	Value	1.1
CO7	TPS2	Understand	Respond	1.1

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO	РО	PO1	PO1	PO1	PSO	PSO						
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L	L				М		М			S	S
CO 2	М	L	L					М		М			М	М
CO 3	S	М	L	L				М		М			S	S
CO 4	М	L						М		М			М	М
CO 5	М	L						М		М			М	М
CO 6	S	М	L	L				М		М			S	S
CO 7	М	L						М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

	Continuous Assessment Tests				Assigni	ment	
Cognitive	1	2	3	1	2	3	Terminal
Levels							Examination
Remember	20	20	20				20
Understand	30	30	30				30
Apply	50	50	50	100	100	100	50
Analyse							
Evaluate							
Create							

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-

Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment**

Course Outcome 1(CO1):

- 1. Calculate the drift velocity of the free electrons in a conductor of area 10⁻⁴m², given the electron density to be 8x10²⁸/m³when a current of 5A flows through it.
- 2. Calculate the electron density ,if the drift velocity of electrons in a metal wire of diameter 5mm is 6x10⁻⁴m/s and the current is 10A
- 3. Calculate the relaxation time of free electrons in a metal of resistivity 1.54x10⁻⁸ ohmm, if the metal has 5.8x10²⁸ electrons/m³ .Identify the possible material and suggest the suitability for transformer winding applications.

Course Outcome 2(CO2):

- 1. Differentiate between intrinsic and extrinsic semiconductors with examples.
- 2. Recall the relation between Fermi velocity and Fermi energy.
- 3 Define the Fermi function and plot the Fermi function for T=0K and T=300K.

Course Outcome 3(CO3):

- 1. Calculate the intrinsic carrier density, intrinsic conductivity and resistivity at a 300K in germanium. Suppose one boron atom for every 10⁵ germanium atoms are added, Identify the new resistivity of germanium.
- **2.** The electrical conductivity of germanium at 20°C is 2 mho m⁻¹. What is its conductivity at 40°C?. Band gap of germanium =0.72eV

Course Outcome 4 (CO4):

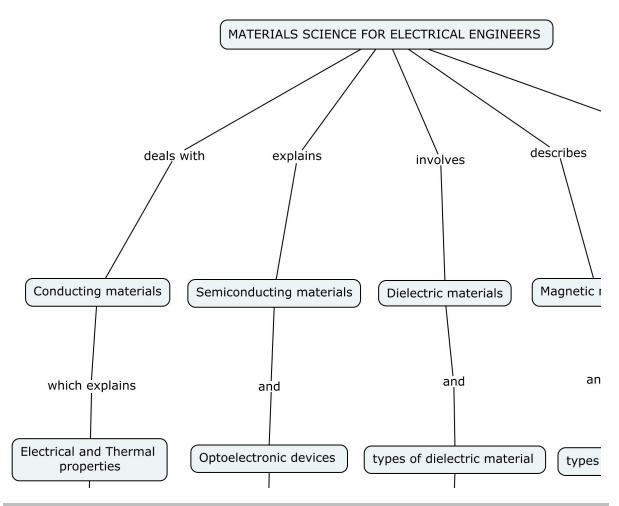
- 1.List the different parameters affecting power loss in a dielectric.
- 2. Explain the different types of polarization and justify the size dependence of electronic polarization.
- 3. State the factors which affect dielectric strength.

Course Outcome 5 (CO5):

- 1. Define dielectric constant of a material
- 2. Explain the frequency dependence of dielectric constant from power frequency to optical frequency
- 3. Justify the usage of dielectric for antenna applications.

Course Outcome 6(CO6):

- 1. A magnetic material has a flux density and magnetization of 0.0044 Wb./m² and 3300 A/m respectively. Calculate the magnetizing force and relative permeability of the material. Comment on the type of magnetic material and possible applications.
- 2. The magnetic field strength in copper is 10⁶ A/m. If the magnetic susceptibility of copper is -0.8X10⁻⁵, calculate the flux density and magnetization in copper


^{***2} or 3 at the cognitive level of course outcome

3. A para magnetic material has a magnetic field intensity of 10⁴ A/m. If the susceptibility of the material at room temperature is 3.7X10⁻³ calculate the magnetization and flux density in the material.

Course Outcome 7 (CO7):

- 1. Mention any four method of synthesis of nano materials.
- 2. Define a smart material
- 3. Explain the properties and applications of metallic glasses

Concept Map

Syllabus

Conducting Materials

Conduction in metals- Classical free electron theory of metals- Mobility and Conductivity-Thermal Conductivity of metals, polymers and ceramics-Widemaan Franz Law . Quantum

free electron theory –Fermi function,Band theory of Solids Blochs theorem-Kronig-Penny model –Application of low and High resistivity materials.

Semiconducting Materials

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky) Semiconductor materials of interest for optoelectronic devices-Laser diode and LED.

Dielectric materials

Electric polarisation-Different types of polarisation- -Internal field-Claussius Mosotti Relation-Dielectric Loss-Dielectric Breakdown-Uses of dielectrics (Capacitors and Transformers)-Frequency and temperature dependence of Polarization, Ferroelectric materials Piezoelectric materials- Multilayer Ceramic Capacitors and Memory devices.

Magnetic materials

Origin of magnetic moment - Comparison of magnetic materials-(Dia, Para, Ferro,) Domain theory-Hysteresis- Hard and soft magnetic materials, Ferrites —properties & applications. Epstiens frame method, Magnetic grades, Neodymium magnets.

Advanced Engineering materials

Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications - Superconductors- High Temperature Superconductor and Applications , Nano materials-Synthesis, Properties and Applications- Smart materials-Properties and Applications. Solar cell materials-Silicon & Compound semiconductors.

Learning Resources

- 1. M.A.Wahab Solid State Physics Structure and Properties of Materials, 3rd edition, Narosa Publishers, 2018
- 2. William D Callister Materials Science and Engineering An introduction,9th edition, Wiley Publications, 2013.
- 3. William F Smith, Javed Hashemi, Ravi Prakash Materials Science and Engineering 4th edition, Tata McGraw Hill, 2006
- 4. https://nptel.ac.in/courses/115102025/
- 5. https://nptel.ac.in/courses/117102061/

Course Contents and Lecture Schedule

Module No.	Topic	No. of Hours	Course Outcome
1.	Conducting Materials		
1.1	Conduction in metals - Classical free electron theory of metals - Mobility and Conductivity	2	CO1
1.2	Thermal Conductivity of metals, polymers and ceramics - Wiedemaan Franz Law	1	CO1
1.3	Quantum free electron theory – Fermi function	1	CO1
1.4	Band theory of Solids - Bloch theorem - Kronig - Penny model	2	CO1
1.5	Application of low and high resistivity materials	1	CO1
2.	Semiconducting Materials		

	Total number of hours	36	
	semiconductors		
5.5	Solar cell materials-Silicon & Compound	1	CO7
5.4	Smart materials – Properties and Applications	1	CO7
5.3	Nano materials – Synthesis, Properties and Applications	1	CO7
5.2	Superconductors – High Temperature Superconductor and Applications	1	CO7
	Metallic Glasses – Types of metallic glasses – Preparation – Properties and applications		
5. 5.1	Advanced Engineering materials	1	CO7
	method, Magnetic grades, Neodymium magnets		000
4.3	materials Ferrites – properties & applications - Epstiens frame	2	CO6
4.2	Domain theory – Hysteresis - Hard and soft magnetic	2	CO6
4.1	Origin of magnetic moment-Comparison of magnetic materials - (Dia, Para, Ferro)	1	CO6
4.	Magnetic materials		
3.5	Ferroelectric materials & Piezoelectric materials Multilayer Ceramic Capacitors and Memory devices	2	CO5
3.4	Frequency and temperature dependence of Polarization	2	CO5
3.3	Dielectric Loss - Dielectric Breakdown - Uses of dielectrics(Capacitors and Transformers)	2	CO5
3.2	Internal field - Claussius Mosotti Relation	1	CO5
3.1	Electric polarisation - Different types of polarisation	2	CO4
3.	Dielectric materials		
2.5	Semiconductor materials of interest for optoelectronic devices - Laser diode and LED	2	CO3
2.4	Metal-semiconductor junction (Ohmic and Schottky),	2	CO3
2.3	Diffusion and drift, p-n junction	2	CO2
2.2	Carrier generation and recombination, Carrier transport	2	CO2
2.1	Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier concentration and temperature	2	CO2

Course Designers:

 Dr.A.L.Subramaniyan
 Dr.D.Ravindran
 Prof.V.Veeraganesh
 alsphy@tce.edu drphy@tce.edu vvgphy@tce.edu

18EE230	ELECTRIC CIRCUIT ANALYSIS	Category	L	Т	Р	Credit
		PC	3	0	0	3

Preamble

Electric circuit theory is the fundamental theory upon which all branches of electrical engineering are built. Many areas of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory. Therefore, the basic electric circuit theory course is the most important course for an electrical engineering student, and always an excellent starting point for a beginner in electrical engineering education. Circuit theory is also valuable to students specializing in other branches of the engineering because circuits are a good model for the study of energy systems in general, and because of the applied mathematics, physics, and topology involved.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course students will be able to

СО	Course Outcome Statement	Weightage***
Number		in %
CO1	Use Ohm's law and Kirchhoff's laws to determine the behaviour the given electric circuit	10
CO2	Apply mesh analysis, nodal analysis and network theorems to interpret the behaviour of the given electrical circuit	20
CO3	Apply phasor techniques under steady state to determine the behaviour of the given AC circuit	20
CO4	Find the transient response of the given RL,RC and RLC circuit	20
CO5	Calculate Z, Y ,h, and t parameters of the given two-port network.	20
CO6	Calculate three-phase quantities of the given three phase circuit and mutual inductance of a coupled circuit	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dor	main Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				
CO1	TPS3	Apply	Value		1.2.1
CO2	TPS3	Apply	Value		1.2.1
CO3	TPS3	Apply	Value		1.2.1
CO4	TPS3	Apply	Value		1.2.1
CO5	TPS3	Apply	Value		1.2.1
CO6	TPS3	Apply	Value		1.2.1

Mapping with Programme Outcomes and Programme Specific Outcomes

Co	РО	PO1	PO1	PO1	PSO	PSO								
	70		_	l		1		_					730	
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	M	L	L				М		М			S	S
CO 2	S	М	L	L				М		М			S	S
CO 3	S	М	L	L				М		M			S	S
CO 4	S	М	L	L				М		M			S	S
CO 5	S	М	L	L				М		M			S	S
CO 6	S	М	L	L				М		M			S	S

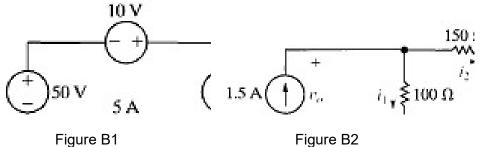
S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

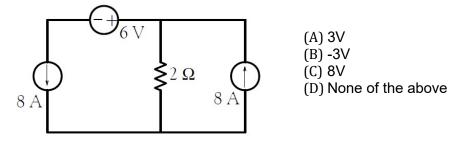
Cognitive		Continu Assessr	ous nent Tests	Assign	nment		Terminal
Levels	1	2	3	1	2	3	Examinati
							on
Remember	10	10	10				10
Understand	30	30	30				30
Apply	60	60	60	100	100	100	60
Analyse	0	0	0				0
Evaluate	0	0	0				0
Create	0	0	0				0

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-

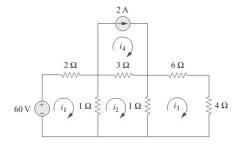

Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment**

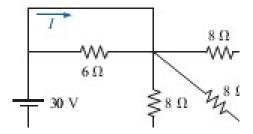

** (2 to 3 at the cognitive level of course outcome)

Course Outcome 1 (CO1):

1. Consider the network shown in figure B1. If the interconnection is valid, find the total power developed in the circuit. If the interconnection is not valid, justify.

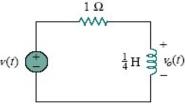


2. The voltage across the 2Ω resistor is equal to

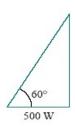


Course Outcome 2 (CO2):

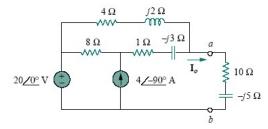
1. Solve mesh currents for the circuit of figure below.



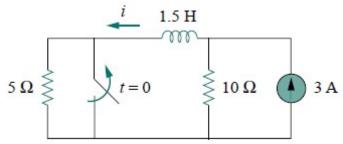
2. Determine the voltage V and current I for the network in figure below using Thevenin's theorem



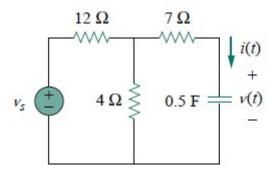
Course Outcome 3 (CO3):


1. At what frequency will the output voltage vo(t) in Fig. below be equal to the input voltage v(t)?

- (a) 0 rad/s
- (b) 1 rad/s
- (c) 4 rad/s
- (d) ∞ rad/s
- (e) none of the above
- 2. In the power triangle shown in Fig. below, the reactive power is:
- (a)1000 VAR leading (b) 1000 VAR lagging (c) 866 VAR leading (d) 866 VAR lagging

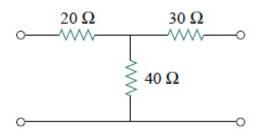


3. Determine the Norton equivalent of the circuit in Fig. Given as seen from terminals a-b. Use the equivalent to find Io.



Course Outcome 4 (CO4):

1. The switch in figure has been closed for a long time. It opens at t = 0. Find i(t) for t > 0.

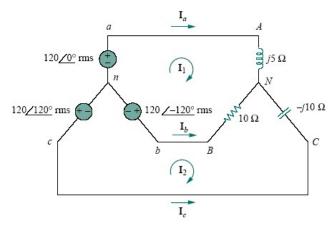


2. Find the step responses v(t) and i(t) to vs = 5u(t) V in the circuit of figure..

Course Outcome 5 (CO5):

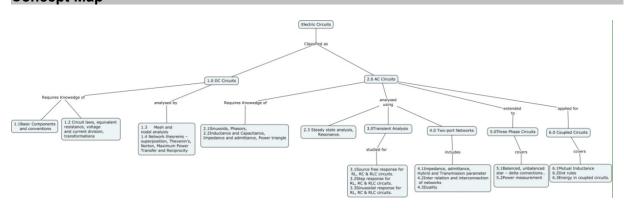
1. Determine the *z* parameters for the circuit in Fig.

2. The ABCD parameters of the two-port network in Fig. below are The output port is connected to a variable load for maximum power transfer. Find *R*_L


and the maximum power transferred.

Course Outcome 6 (CO6):

- 1. Write the relationship between line and phase quantities of a three phase circuit.
- 2. If in an acb phase sequence, $Van = 100 \angle 20^{\circ}$, then Vcn is:


100 ∠140o

- (b) 100∠ 100o
- (c) $100 \angle 500$ (d) $100 \angle 100$
- 3. For the unbalanced circuit in Fig. below, find: (a) the line currents, (b) the total complex power absorbed by the load, and (c) the total complex power supplied by the source.

- 4. If in an acb phase sequence, Van = $100 \angle 20^{\circ}$, then Vcn is:
 - (a) $100 \angle 140^{\circ}$
- (b) $100 \angle 100^{\circ}$
- (c) $100 \angle 50^{\circ}$ (d) $100 \angle 10^{\circ}$

Concept Map

Syllabus

DC Circuits: Basic Components and conventions, Circuit laws, equivalent resistance, voltage and current division, transformations, mesh and nodal analysis, network theorems -Superposition, Thevenin's, Norton's, Maximum Power Transfer and Reciprocity.

AC Circuits: Sinusoids, Phasors, Inductance and Capacitance, Impedance and admittance, Power triangle, steady state analysis, Resonance.

Transient Analysis: Source free, Step and sinusoidal response for RL, RC & RLC circuits.

Two-port Networks: Impedance, admittance, Hybrid and Transmission parameter, Inter relation and interconnection of networks, Duality.

Three Phase Circuits: Balanced, unbalanced star – delta connections. Power measurement.

Coupled Circuits: Mutual Inductance, Dot rules, Energy in coupled circuits.

Learning Resources

- 1. W.H. Hayt & J.K. Kemmerly and Steven M. Durbin, "Engineering circuit analysis", Tata McGraw Hill, 7th edition, New Delhi, 2007
- 2. Charles K. Alexander, Matthew N.O. Sadiku, "Fundamentals of Electric Circuits", Tata McGraw Hill, 5th edition, 2013
- 3. Mahmood Nahvi, Joseph A Edminister, "Electric Circuits", Tata McGraw Hill Education, 5th Edition, 2010.
- 4. Sudhakar A and Shyam Mohan SP, "Electric Circuit Analysis", Tata McGraw Hill, New Delhi, 2008
- 5. NPTEL E-Learning Courses: Basic Electrical Circuits https://onlinecourses.nptel.ac.in/noc17_ee13
- 6. https://www.electrical4u.com

Course Contents and Lecture Schedule

Module No.	Topic	No. of Hours	Course Outcome
1.0	DC Circuits	110010	Gatesine
1.1	Basic Components and conventions	1	CO1
1.2	Circuit laws, equivalent resistance, voltage and current division, transformations	2	CO1
2.1	Mesh and nodal analysis	2	CO2
2.2	Network theorems – Superposition, Thevenin's, Norton's	2	CO2
2.2	Network theorems – Maximum Power Transfer and Reciprocity	2	CO2
3.0	AC Circuits		
3.1	Sinusoids, Phasors.	2	CO3
3.2	Inductance and Capacitance, Impedance and admittance, Power triangle	3	CO3
3.3	Steady state analysis, Resonance.	3	CO3
4.0	Transient Analysis		
4.1	Source free response for RL, RC & RLC circuits.	2	CO4

4.2	Step response for RL, RC & RLC circuits.	2	CO4
4.3	Sinusoidal response for RL, RC & RLC circuits.	3	CO4
5.0	Two-port Networks		
5.1	Impedance and admittance parameters	3	CO5
5.1	Hybrid and Transmission parameters	2	CO5
5.2	Inter relation and interconnection of networks	2	CO5
5.3	Duality	1	CO5
6.0	Three Phase Circuits		
6.1	Balanced, unbalanced star – delta connections.	2	CO6
6.2	Power measurement	1	CO6
6.3	Mutual Inductance, Dot rule in coupled circuit	1	CO6
	TOTAL	36	

Course Designers:

Dr.C.K. Babulal ckbeee@tce.edu
 Dr.N.Shanmugavadivoo nsveee@tce.edu

18EE240	ELECTROMAGNETIC FIELDS	Category	L	Τ	Р	Credit
		PC	2	1	0	3

Preamble

The Course is designed to impart knowledge of fundamentals of vector calculus, concept of electric and magnetic fields (both static and time varying) applicable to electrical engineering. The course exposes the students to the concept of resistance, capacitance, and Inductance. Students will get an idea about behaviour of field in materials (magnetic, conducting, insulating materials) at the interface of two different materials and their applications to Electrical Engineering. Force, torque, generator and transformer working principles are explained with Electromagnetic Fields.

Prerequisite

18PHB20: Physics

18MA110 : Engineering Mathematics - I

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Describe the coordinate systems and vector calculus applicable to electric and magnetic fields.	15
CO2	Explain the behaviour of Electric and Magnetic field in free space and in material space with the help of fundamental laws.	15
CO3	Explain Voltage, Current and basic circuit laws	10
CO4	Demonstrate Resistance, Inductance and capacitance with materials of different resistivity/Permeability/Permittivity and of different dimensions.	35
CO5	Calculate force on a current carrying conductor and torque on a current loop subjected to magnetic fields	10
CO6	Relate dynamic electric and magnetic fields with help of	15

	Faraday's	Law	and	Maxwell's	Equation,	and,	their
	application	s to e	ectric	al machines	;		

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain L	evel	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			•	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.2.2,
CO2	TPS2	Understand	Respond		1.2.2,
CO3	TPS2	Understand	Respond		1.2.2
CO4	TPS3	Apply	Value	Mechanism	1.2.2, 2.3.1, 2.5.1, 3.1.1,
					3.2.6
CO5	TPS3	Apply	Value	Mechanism	1.2.2, 2.3.1
CO6	TPS4	Understand	Respond		1.2.2, 2.3.1, 3.2.6

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	РО	PO	РО	РО	РО	РО	PO	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L	L					М		М			М	М
CO 2	М	L	L					М		М			М	М
CO 3	М	L	L					М		М			М	М
CO 4	S	М	М	L	S			М		М			S	S
CO 5	М	L	L		S			М		М			М	М
CO 6	М	L	L					М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive		ontinuous ssessmer		Assig	ınment	Terminal	
Levels	1	2		1	2	3	Examinati
							on
Remember	20	20	10				10
Understand	60	40	50	100			50
Apply	20	40	40		40	40	40
Analyse							
Evaluate							
Create							

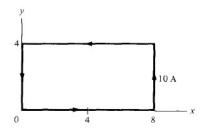
Assessment Pattern: Psychomotor

Psychomotor Skill	Assignment 2 & 3
Perception	
Set	
Guided Response	30
Mechanism	30
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment**

Course Outcome 1 (CO1):

- 1. Given points P(I, 3, 5), Q(2, 4, 6), and R(0, 3, 8), find: (a) the position vectors of P and R, (b) the distance vector $r_{qr}(c)$ the distance between Q and R,
- 2. Determine the divergence of these vector fields:


(a)
$$P = x^2yz x + xz 2$$

(b) Q =
$$\rho \sin \phi \hat{\rho} + \rho^2 z \hat{\Phi} + z \cos \phi z$$

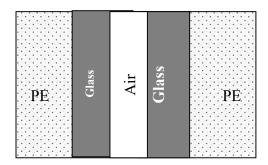
3. Determine the flux of $\overline{\mathbf{p}} = \rho^2 \cos^2 \phi \mathbf{\hat{p}} + z \sin \phi \mathbf{\hat{p}}$ over the closed surface of the cylinder $0 \le z \le 1$, $\rho = 4$. Verify the divergence theorem for this case.

Course Outcome 2 (CO2):

- 1. A homogeneous dielectric (ϵ_r = 2.5) fills region 1 (x \leq 0) while region 2 (x \geq 0) is free space.
 - (a) If $\overline{\boldsymbol{D}}_1 = 12 \boldsymbol{\hat{x}} 10 \boldsymbol{\hat{y}} + 4 \boldsymbol{\hat{z}}$ nC/m², find $\overline{\boldsymbol{D}}_2$ and θ_2 .
 - (b) If $\overline{E}_2 = 12 \text{ V/m}$ and $\theta_2 = 60^\circ$, find \overline{E}_1 and θ_1 .
- 2. A charge distribution in free space has $\rho_V = 2r \text{ nC/m}^3$ for $0 \le r \le 10 \text{ m}$ and zero otherwise. Determine $\overline{\mathbf{E}}$ at r = 2 m and r = 12 m.
- 3. A rectangular loop carrying 10 A of current is placed on z = 0 plane as shown in Figure below. Evaluate \mathbf{H} at

(2, 2, 0)

(4, 2, 0)


(4, 8, 0)

Course Outcome 3 (CO3):

- 1. Two point charges 4 μ C and 5 μ C are located at (2 , 1 , 3) and (0, 4, 2) , respectively. If a third point charge of 3 μ C is located at the origin. Find the potential at (1 , 5, 2) assuming V(∞) = 0.
- 2. Prove that R = V/I.
- 3. How do you relate law of conservation of charges with Kirchhoff's law?

Course Outcome 4 (CO4):

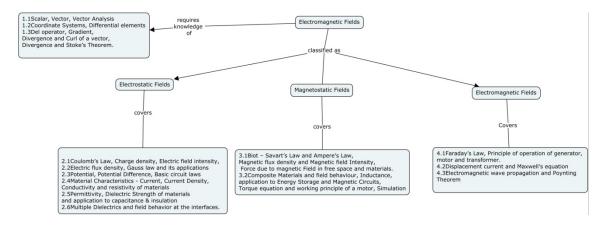
1. Two parallel sheets of glass (ε_r = 8.5) mounted vertically are separated by a uniform air gap between their inner surface. The sheets, properly sealed, are covered with polyethylene (ε_r = 3.0) as shown in Fig. below. A uniform electric field of strength 2000 V/m in the horizontal direction exists in the oil. Calculate the magnitude and direction of the electric field in the glass and in the enclosed air gap when (a) the field is normal to the glass surfaces, and (b) the field in the oil makes an angle of 75° with a normal to the glass surfaces. Ignore edge effects.

1. A toroid of circular cross section whose center is at the origin and axis the same as the z-axis has 1000 turns with total *radius* 10 cm, core radius of 1 cm. If the toroid carries a 100 mA, current, find *H* at,

(6 cm, 9 cm, 0)

- 2. A composite conductor 10 m long consists of an inner core of steel of radius 1.5 cm and an outer sheath of copper whose thickness is 0.5 cm
 - (a) Determine the resistance of the conductor.
 - (b) If the total current in the conductor is 60 A, what current flows in each metal?

(c) Find the resistance of a solid copper conductor of the same length and cross-sectional areas as the sheath. Take the resistivity of copper and steel as 1.77 * 10^{-8} and $11.8 * 10^{-8} \Omega m$, respectively


Course Outcome 5 (CO5):

- Two conductors carrying current in same direction are place side by side. Obtain the
 force developed between the two conductors and draw the magnetic field lines
 around it. If the direction of current in one of the conductor is reversed discuss the
 change in force and field lines.
- 2. A current loop of dimensions 2 cm by 4 cm extends from x=0 and x=2 cm and y=0 and y =4 cm. It is free to rotate about its axis of the lengthier side. It carries a current of 40mA in the anticlockwise direction and is subjected to a uniform magnetic field 2 x + 4 x. Find the torque on the current loop. What is the net force on the loop.

Course Outcome 6 (CO6):

- 1. Justify the presence of displacement current and hence modification in Ampere's law.
- 2. Derive the Maxwell's equation for static fields.
- 3. Derive the transformer Equation using Faradays Law.

Concept Map

Syllabus

Mathematical Foundation

Scalar, Vector, Vector addition, Subtraction and Multiplication, Coordinate Systems, Differential elements, Del operator, Gradient, Divergence and Curl of a vector, Divergence and Stoke's Theorem.

Electrostatic Fields

Review (Quantitative) of Coulomb's Law, Charge density, Electric field intensity, Electric flux density, Gauss law, Potential, Potential Difference, Basic circuit laws - verifications.

Material Characteristics - Current, Current Density, Conductivity of materials. Permittivity / Dielectric Strength of materials and application to capacitance & electrical insulation. Multiple Dielectrics and field behavior at the interfaces. Calculation of capacitance for various applications and energy storage. Capacitance of Transmission lines and cables. Simulation of Electric Fields using FEM packages.

Magneto static Fields

Review (Quantitative) of Biot – Savart's Law and Ampere's Law, Magnetic flux density and Magnetic field Intensity, Field behaviour at interface of magnetic materials, Inductance, application to Energy Storage and Magnetic Circuits. Inductance of Transmission lines and cables. Simulation of Magnetic Fields using FEM packages.

Force and Torque

Force on a current carrying conductor subjected to a magnetic field, Torque on a current loop subjected to a magnetic field and working principle of motor.

Dynamic Fields

Faraday's Law of Electromagnetic Induction, Principle of operation of generator and transformer, Displacement current, Maxwell's equations, Poynting Theorem.

ASSIGNMENTS

- 1. Simulation of Electrical and Magnetic Fields using FEM packages.
- 2. Demonstration of Electric and Magnetic fields using simple experiments
- 3. Seminar on practical applications of electric and magnetic fields like working of XEROX machine, MRI Scan etc.
- 4. Development of R, L and C components for various applications

Learning Resources

- 1. William Hayt Jr. and John A. Buck , "Engineering Electromagnetics", TMH publishing co. Itd., 7th Edition, 2006.
- 2. John D. Kraus, "Electromagnetics", Mcgraw Hill International Editions, 4th Edition, 1992.
- 3. Mathew N.O. Sadiku, "Principles of Electromagnetic Fields", 4th Edition, Oxford University Press, 2010.

Course Contents and Lecture Schedule

Module	Topics	No. of	Course
No.		Lecture	Outcome
		Hours	
1.0	Vector Calculus		
1.1	Scalar, Vector, Vector addition, Subtraction and	2	CO1
	Multiplication		
1.2	Coordinate Systems, Differential elements	2	CO1
1.3	Del operator, Gradient, Divergence and Curl of a	3	CO1
	vector, Divergence and Stoke's Theorem.	3	
2.0	Electrostatic Field (Quantitative Review)		
2.1	Coulomb's Law, Charge density, Electric field intensity,	2	CO2
2.2	Electric flux density, Gauss law and its applications	2	CO2
2.3	Potential, Potential Difference, Basic circuit laws -	2	CO3
	verifications		
2.4	Material Characteristics - Current, Current Density,	2	CO3
	Conductivity of materials	3	

2.5	Permittivity, Dielectric Strength of materials and	3	CO4
	application to capacitance & insulation	-	
2.6	Multiple Dielectrics and field behavior at the interfaces.	1	CO4
2.7	Calculation of capacitance for various application and energy storage. Simulation of electric fields	3	CO4
2.8	Calculation of capacitance of transmission lines and cables.	1	CO4
3.0	Magneto static Fields (Quantitative Review)		
3.1	Biot – Savart's Law and Ampere's Law, Magnetic flux density and Magnetic field Intensity, Field behaviour at the interface of magnetic materials	3	CO2
3.2	Inductance, application to Energy Storage and Magnetic Circuits	2	CO4
3.3	Inductance of a Transmission line and Cable	1	CO4
3.4	Simulation of magnetic fields	1	CO6
4.0	Force and Torque		
4.1	Force on a Current carrying conductor subjected to magnetic field.	1	CO5
4.2	Torque on a current carrying loop subjected to magnetic field, working principle of a motor	1	CO5
5.0	Dynamic Fields		
5.1	Faraday's Law, Principle of operation of generator and transformer.	1	CO6
5.2	Displacement current and Maxwell's equations	1	CO6
5.3	Poynting Theorem	1	CO6
	Total	36	

Course Designers:

1. Dr.V. Prakash

2. Dr.R. Rajan Prakash

vpeee@tce.edu

r rajanprakash@tce.edu

18EE250 ELECTRONIC DEVICES AND CIRCUITS Ca

Category L T P Credit

PC 3 0 0 3

Preamble

Signals contain information about a variety of things and activities in our physical world. An observer, be it a human or a machine, invariably needs to condition and process the signals in some predetermined manner to extract the required information from the signal. This signal conditioning/processing is usually most conveniently performed by electronic systems. The signal conversion/conditioning/processing is done by using different semiconductor/signal conditioning devices like diodes, transistors and voltage regulator ICs, etc. These could involve rectification, amplification, filtering, regulation modulation, demodulation, mixing, frequency synthesizing etc.

Prerequisite

Basics of Electrical and Electronics Engineering

Course Outcomes

On the successful completion of the course, students will be able to

СО	COURSE OUTCOMES	Weightage %
No.		
CO1	Explain the characteristics and applications of diode, special diodes, BJTs ,UJT and MOSFETs	40
CO2	Design rectifier, clipper and clamper circuits for the given specifications	10
CO3	Design BJT and MOSFET based amplifier for the given specifications.	25
CO4	Explain the operation of Class A,B,C and D power amplifiers	5
CO5	Design feedback amplifiers and oscillators for the given specifications	10
CO6	Explain the operation of opto-electronic devices	10

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	nain Level		CDIO Curricular Components
#	Proficiency	Cognitive Affective Psychomotor			(X.Y.Z)
	Scale			-	
CO1	TPS2	Understand	Respond		1.2.3
CO2	TPS3	Apply	Value		1.2.3
CO3	TPS3	Apply	Value		1.2.3

CO4	TPS2	Understand	Respond	1.2.3
CO5	TPS3	Apply	Value	1.2.3
CO6	TPS3	Understand	Respond	1.2.3

Mapping with Programme Outcomes

COs	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO1 0	PO 11	PO 12	PSO 1	PS O2
001	N 4	1						N 4		N 4				N 4
CO1	M	L						M		M				M
CO2	S	M	L	L				M		M				S
CO3	S	M	L	L				М		M				S
CO4	М	L						М		M				М
CO5	S	M	L	L				М		M				S
CO6	М	L						М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Assessment Lattern. Cognitive Bomain									
	Con	tinuous	Assessment	sessment Assignment					
Cognitive	Tests					Terminal			
Levels	1	2	3	1	2	3	Examination		
Remember	20	20	20	-	-	-	20		
Understand	30	30	30	-	-	-	30		
Apply	50	50	50	100	100	100	50		
Analyse	0	0	0				0		
Evaluate	0	0	0				0		
Create	0	0	0				0		

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Explain the ideal characteristics of diode.
- 2. Explain the three regions in output characteristics of transistor.
- 3. Explain the characteristics of UJT.

Course Outcome 2 (CO2):

- Compare the characteristics of silicon and a germanium diode and determine which
 you would prefer to use for most practical applications. Give some details. Refer to a
 manufacturer's listing and compare the characteristics of a germanium and a silicon
 diode of similar maximum ratings.
- 2. For the series diode configuration shown in figure 1 employing the diode characteristics of Figure 2. Determine: (a) VDQ and IDQ. (b) VR.

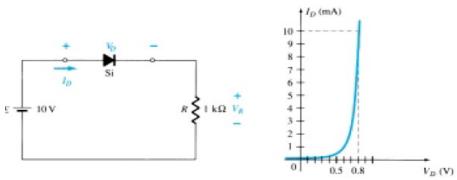
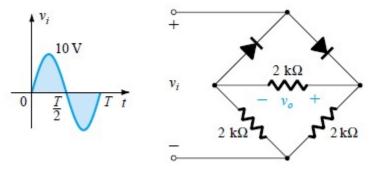
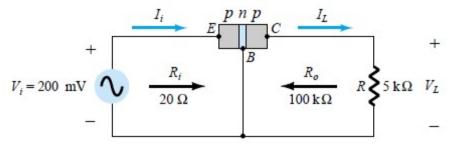



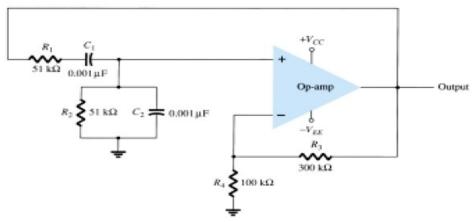
Figure 1 Figure 2


3. Determine the output waveform for the network of Figure and calculate the output do level and the required PIV of each diode.

Course Outcome 3 (CO3):

- 1. Explain the input and output characteristics of BJT in CE configuration
- 2. Calculate the voltage gain (Av = VL/Vi) for the network shown in figure if Vi = 500 mV and

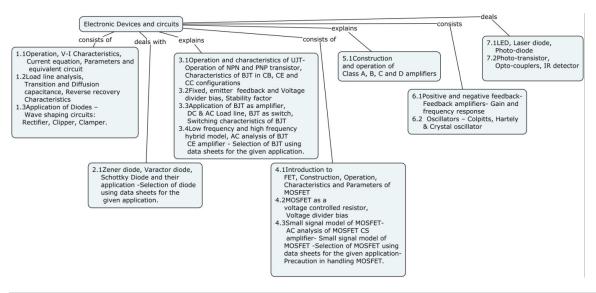
 $R=1 \text{ k}\Omega$ (The other circuit values remain the same.)


3. Explain the construction and characteristics of n-channel depletion MOSFET

Course Outcome 4(CO4):

- 1. Explain the difference between Class A and Class B amplifiers.
- 2. Explain the construction and operation of series fed class A amplifier.
- 3. Describe the operation of Transformer-Coupled Push–Pull amplifier using suitable sketch.

Course Outcome 5 (CO5):


- 1. Draw the block diagram of feedback amplifier.
- 2. Determine the voltage gain, input, and output impedance with feedback for voltage series feedback having A=-100, Ri = 10 k Ω , Ro = 20 k Ω for feedback of (a) β =-0.1 and (b) β =-0.5
- 3. Calculate the resonant frequency of the Wien bridge oscillator

Course Outcome 6 (CO6):.

- 1. **Explain the** Spectral response of Se, Si, and the naked eye.
- 2. Determine the energy associated with the photons of green light if the wavelength is 5000 Å. Give your answer in joules and electron volts.

Concept Map:

Syllabus

Diode – Operation, V-I Characteristics, Current equation, Parameters and equivalent circuit, Load line analysis, Transition and Diffusion capacitance, Reverse recovery Characteristics, Application of Diodes – Wave shaping circuits: Rectifier, Clipper, Clamper.

Special Diodes: Zener diode, Varactor diode, Schottky Diode and their application - Selection of diode using data sheets for the given application.

UJT and BJTs – Operation and characteristics of UJT-Operation of NPN and PNP transistor, Characteristics of BJT in CB, CE and CC configurations, Fixed, emitter feedback and Voltage divider bias, Stability factor, Application of BJT as amplifier, DC and AC Load line, BJT as switch, Switching characteristics of BJT, Low frequency and high frequency hybrid model, AC analysis of BJT CE amplifier - Selection of BJT using data sheets for the given application.

MOSFETs: Introduction to FET, Construction, Operation, Characteristics and Parameters of MOSFET, MOSFET as a voltage controlled resistor, Voltage divider bias, Small signal model of MOSFET- Selection of MOSFET using data sheets for the given application. Precaution in handling MOSFET

Power Amplifiers: Construction and operation of Class A, B, C and D amplifiers

Feedback amplifiers & Oscillators: Positive and negative feedback- Feedback amplifiers- Gain and frequency response - Oscillators - Colpitts, Hartely & Crystal oscillator

Opto-electronic Devices: LED, Laser diode, Photo-diode, Photo-transistor, Opto-couplers, IR detector

Learning resources

- 1. Robert Boylestad and Lowis Nashelsky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education, 2009.
- 2. Floyd T.L," Electronic Devices", 7th Edition, Pearson Education, 2009
- 3. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Prentice Hall India, 2010
- 4. Albert Malvino and David J.Bates, "Electronic Principles",7th Edition, Tata Mc-Graw Hill, 2007
- 5. Jacob Millman, Halkias C.C and Satyabrata Jit, "Electronic Devices and Circuits", 3rd Edition, Tata Mc-Graw Hill, 2010
- 6. Sedra A.S. and Smith K.C, "Microelectronic Circuits", 5th Edition, Oxford press, 2006
- 7. Donald A.Neamen, "Electronic circuit analysis and design", Second edition, Tata Mc-Graw Hill, 2003.

Course Contents and Lecture Schedule

S.No.	Topics	No. of Lectures	СО
1.	Diode :		
1.1	Operation, V-I Characteristics, Current equation, Parameters and equivalent circuit	2	CO1
1.2	Load line analysis, Transition and Diffusion capacitance, Reverse recovery Characteristics	1	CO1
1.3	Application of Diodes – Wave shaping circuits: Rectifier, Clipper	2	CO2
1.4	Clamper.	2	CO2
2.	Special Diodes:		
2.1	Zener diode, Varactor diode, Schottky Diode and their application - Selection of diode using data sheets for the given application.	2	CO1
3.	UJT and BJTs:		
3.1	Operation and characteristics of UJT-Operation of NPN and PNP transistor, Characteristics of BJT in CB, CE and CC configurations	2	CO1
3.2	Fixed, emitter feedback and Voltage divider bias, Stability factor	2	CO3
3.3	Application of BJT as amplifier, DC & AC Load line, BJT as switch	2	CO3
3.4	Switching characteristics of BJT	1	CO3
3.5	Low frequency and high frequency hybrid model, AC analysis of BJT CE amplifier - Selection of BJT using data sheets for the given application.	2	CO1
4.	MOSFETs:		
4.1	Introduction to FET, Construction, Operation, Characteristics and Parameters of MOSFET	2	CO1
4.2	MOSFET as a voltage controlled resistor, Voltage divider bias	2	CO3
4.3	Small signal model of MOSFET- AC analysis of MOSFET CS amplifier- Small signal model of MOSFET -	2	CO1
4.4	Selection of MOSFET using data sheets for the given application- Precaution in handling MOSFET.	2	CO1
5.	Power Amplifiers:		
5.1	Construction and operation of Class A, B, C and D amplifiers	2	CO4

6.	Feedback amplifiers & Oscillators:		
6.1	Positive and negative feedback- Feedback amplifiers- Gain and frequency response	2	CO5
6.2	Oscillators - Colpitts, Hartely & Crystal oscillator	2	CO5
7.	Opto-electronic Devices:		
7.1	LED, Laser diode, Photo-diode	2	CO6
7.2	Photo-transistor, Opto-couplers, IR detector	2	CO6
	Total	36	

Course Designers:

Dr.M.Saravanan msee@tce.edu
 Dr.V.Suresh Kumar vskeee@tce.edu
 Dr.S.Arockia Edwin xavier saexeee@tce.edu

18EE270 ELECTRONIC DEVICES AND Category L T P Credit CIRCUITS LAB PC 0 0 2 1

Preamble

This laboratory gives a practical exposure to the students to learn the characteristics of various electronic devices such as diodes, BJT, UJT and MOSFET that are used nowadays in most of the electronic circuits. The students also learn the design and the construction of different electronic circuits based on the above electronic devices. To validate the experimental results, the use of simulation tools for the performance analysis of the circuits is also introduced to the students.

Prerequisite

Basics of Electrical and Electronics Engineering

Course Outcomes

On the successful completion of the course, students will be able to:

CO No.	Course outcomes	Weightage in %
CO1.	Find the equivalent circuit parameters of the given Diode, BJT, MOSFET, and UJT experimentally	30
CO2.	Analyze the characteristics of the designed zener regulator for the given specifications experimentally	10
CO3.	Analyze the performance of the diode rectifier circuit for the given specifications experimentally	10
CO4.	Analyze the performance of the diode wave shaping circuits (Clippers and Clampers) designed for the given specifications experimentally	20
CO5	Analyze the performance of the designed amplifiers and oscillators to meet the given specifications experimentally	20
CO6	Analyze the performance of the analog device characteristics and circuits using simulation tools	10

Mapping with Programme Outcomes

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	S	М	L	L	S			М	М	М				S
CO2	S	S	S	M	S			М	М	М				S

CO3	S	S	S	М	S		М	М	М		S
CO4	S	S	S	M	S		М	М	М		S
CO5	S	S	S	М	S		М	М	М		S
CO6	S	S	s	М	S		М	М	М		S

S- Strong; M-Medium; L-Low

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Do	main Level		CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale				(X.Y.Z)
CO1	TPS3	Apply	Value	Mechanism	1.2.3, 2.2.3
CO2	TPS4	Analyze	Organize	Complex Overt	1.2.3 2.2.3,
				Responses	
CO3	TPS4	Analyze	Organize	Complex Overt	1.2.3 2.2.3
				Responses	
CO4	TPS4	Analyze	Organize	Complex Overt	1.2.3 2.2.3
		7	J. gar20	Responses	
				'	
CO5	TPS4	Analyze	Organize	Complex Overt	1.2.3 2.2.3
				Responses	
CO6	TPS4	Apolyzo	Organiza	Compley Overt	1.2.3 2.2.3
COB	1754	Analyze	Organize	Complex Overt	1.2.3 2.2.3
				Responses	

Assessment Pattern: Cognitive Domain

Cognitive	Model	Terminal
Levels	Examination	Examination
Remember		
Understand		
Apply	20	20
Analyse	50	50
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Practical Component
Perception	
Set	
Guided Response	
Mechanism	30
Complex Overt	
Responses	
Adaptation	
Origination	

List of experiments

E.No	Name of the experiment	СО	No.of sessions
1.	Familiarization of CRO,DSO,AFO, Bread board ,Deives,	CO1 to	2
	Data sheet	CO6	
2.	Characteristics of PN junction diode, Zener diode and	CO1	1
	Opto Isolators		
3.	Characteristics of BJT, MOSFET and UJT	CO1	2
4.	Design of DC voltage regulator using zener diode	CO2	1
5.	Design of Rectifier with and without filter	CO3	1
6.	Design of Wave shaping circuits (clipper and clamper)	CO4	2
7.	Design of CE amplifier and LC Oscillator	CO5	2
8.	Analyze the characteristics of analog devices and circuits using PSPICE/PSIM/Simulink/NI-MY DAQ	CO6	1

Course Designers

Dr.M.Saravanan msee@tce.edu
 Dr.V.Suresh Kumar vskeee@tce.edu
 Dr.S.Arockia Edwin xavier saexeee@tce.edu

18EE280	ELECTRICAL WORKSHOP	Category	L	Т	Р	Credit
		ES	0	0	2	1

Preamble

The course is designed to provide students a widespread knowledge and understanding of the basic Electrical Systems Components and Laws. The indispensable and pervasive knowledge of electrical wiring and the electronic circuits will give the students an insight to their practical approach in our daily life.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyze the resistance of various dimensions with different resistivity's experimentally	10
CO2	Analyze the inductance of various core dimensions and winding configurations experimentally	10
CO3	Analyze the capacitance of various shapes and materials experimentally	10
CO4	Analyze Electric field lines and equi-potential lines of different electrode configurations experimentally.	10
CO5	Analyze the B-H curve of various materials at various frequencies experimentally	10
CO6	Practice assembling, soldering and testing of the given simple electronic circuit using PCB	10
CO7	Verify Electrical circuit laws, and theorems for the electric circuit using hardware and simulation software	20
CO8	Verify series resonance phenomena in a RLC circuit experimentally	10
CO9	Analyze the transient behavior of the given RL, RC, RLC circuits experimentally	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

СО	TCE		Learning D	CDIO Curricular	
#	Proficiency	Cognitive Affective		Psychomotor	Components
	Scale			•	(X.Y.Z)
CO1	TPS4	Analyze	Organise	Complex Overt	1.2.2. ,2.2.3

				Responses	
CO2	TPS4	Analyze	Organise	Complex Overt	1.2.2 ,2.2.3
				Responses	
CO3	TPS4	Analyze	Organise	Complex Overt	1.2.2 ,2.2.3
				Responses	
CO4	TPS4	Analyze	Organise	Complex Overt	1.2.2 ,2.2.3
				Responses	
CO5	TPS4	Analyze	Organise	Complex Overt	1.2.2 ,2.2.3
				Responses	
CO6	TPS3	Apply	Value	Mechanism	1.2.1 ,2.2.3
CO7	TPS3	Apply	Value	Mechanism	1.2.1. ,2.2.3
CO8	TPS3	Apply	Value	Mechanism	1.2.1 ,2.2.3
CO9	TPS4	Analyze	Organise	Complex Overt	1.2.1 ,2.2.3
				Responses	

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	РО	Р	РО	РО	PO	Р	РО	РО	РО	PO	PO	РО	PS	PS	PS
	1	0	3	4	5	0	7	8	9	10	11	12	01	O2	O3
		2				6									
CO1	S	S	М	М	S			М	М	М				S	S
CO2	S	S	М	М	S			М	М	М				S	S
CO3	S	S	М	М	S			М	М	М				S	S
CO4	S	S	М	М	S			М	М	М				S	S
CO5	S	S	М	М	S			М	М	М				S	S
CO6	S	S	М	М	S			М	М	М				S	S
CO7	S	S	М	М	S			М	М	М				S	S
CO8	S	S	М	М	S			М	М	М				S	S
CO9	S	S	М	М	S			М	М	М				S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand		
Apply	30%	30%
Analyse	40%	40%
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Mini project /Practical Component/Observation
Perception	

Set	
Guided Response	
Mechanism	30%
Complex Overt Responses	
Adaptation	
Origination	

List of Experiments/Activities with CO Mapping

List of Experiments/Activities with CO mapping				
Experiment	СО			
Familiarization of magnetic and electric field lines.	C01			
Familiarization of basic protective devices (fuse, MCB, ELCB)	to			
Familiarization of ammeter, voltmeter, wattmeter, rheostat , power supply	CO9			
Design, Develop and Analyze the resistance of various dimensions with different resistivity's experimentally	CO1			
Design, Develop and Analyze the inductance of various core dimensions and winding configurations experimentally	CO2			
Design, Develop and Analyze the capacitance of various shapes and materials experimentally	CO3			
Plot and analyze Electric field lines and equipotential lines of different electrode configurations experimentally.	CO4			
Analyze the B-H curve of various materials at various frequencies.	CO5			
Assembling, Soldering and Testing of Simple electronic Circuit using PCB	CO6			
Verification of Electrical laws for the electric circuit using hardware and simulation software	CO7			
Verification of superposition, Thevenin and maximum power transfer theorems for the electric circuit using hardware and simulation software				
Verification of series resonance phenomena in a RLC circuit	CO8			
Analyze the transient behaviour of the given RL ,RC,RLC circuits	CO9			

Learning Resources

1. Electrical Workshop Manual prepared by TCE Staff Members

Course Designers:

1. Dr.V.Saravanan vseee@tce.edu

18ES290	LATERAL THINKING	Category	L	T	P	Credit
		ES	0	0	2	1

Preamble

The purpose of thinking is to collect information and to make the best possible use of it. Vertical thinking is concerned with proving or developing concept patterns. Lateral thinking is concerned with restructuring such patterns (insight) and provoking new ones (creativity). Lateral and vertical thinking are complementary. Skill in both is necessary. Although the emphasis in education has always been exclusively on vertical thinking, the need for lateral thinking arises from the limitations of the behaviour of mind as a self-maximizing memory system. Lateral thinking can be learned, practised and used. It is possible to acquire skill in it just as it is possible to acquire skill in mathematics. The course provides formal opportunities to practise lateral thinking and also an explanation of the processes involved.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course students will be able to

CO #	Course Outcome Statement	Weightage in %
CO1	Explain the concept of lateral thinking, distinguish it from vertical thinking.	10
CO2	Use lateral thinking for problem solving	10
CO3	Generate Alternatives, challenge assumptions and suspend judgment and Practice lateral thinking in design process	20
CO4	Apply the concept of factorization and reversal method for restructuring	20
CO5	Organize brainstorming sessions	10
CO6	Use PO for innovation	10
CO7	Aware of limitation of established patterns and practice lateral thinking in small projects	20

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dor	main Level	CDIO	Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale			•	(X.Y.Z)	
CO1	TPS2	Understand	Respond	-	2.3.1, 3.2.6	

CO2	TPS3	Apply	Value	-	2.4.1, 2.4.2, 2.4.3
CO3	TPS3	Apply	Value	-	2.4.1, 2.4.2, 2.4.3, 2.4.5,
					2.4.6
CO4	TPS3	Apply	Value	-	2.3.1, 2.4.2, 2.4.3
CO5	TPS4	Analyse	Organize	-	3.1.1, 3.1.2, 3.2.1, 3.2.2
CO6	TPS3	Apply	Value	-	2.1.4, 2.3.1, 2.4.1, 2.4.2,
					2.4.3, 2.4.6
CO7	TPS5	Evaluate	Characterize	-	2.3.4, 4.5.1, 4.6.1

Mapping with Programme Outcomes and Programme Specific Outcomes

CO#	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	L	-	-	-	-	-	-	-	-	-	L
CO2	S	M	L	-	-	-	-	-	-	-	-	L
CO3	S	M	L	-	-	-	-	S	L	L	-	L
CO4	S	M	L	-	-	-	-	S	L	L	-	L
CO5	S	S	М	L	-	-	-	S	S	S	-	L
CO6	S	M	L	-	-	-	-					L
CO7	S	S	S	М	-	S	-	-	S	S	-	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Continuous Assessment

Worksheets (5) : 20 Marks

Case Studies (3) : 30 Marks

Terminal Examination

Ability Test : 50 Marks

Case Study (Best) Presentation and Viva Voce : 50 Marks

Syllabus

The way the mind works, Difference between lateral and vertical thinking, Attitudes towards lateral thinking, Basic nature of lateral thinking, The use of lateral thinking Techniques, The generation of alternatives, Challenging assumptions, Innovation, Suspended judgment, Design, Dominant ideas and crucial factors, Fractionation, The reversal method, Brainstorming, Analogies, Choice of entry point and attention area, Random stimulation, Concepts/divisions/polarization, The new word PO, Blocked by openness, Description/problem solving/design

Learning Resources

- 1. Edward de Bono, "Lateral Thinking: Creativity Step by Step", Happer Collins Publisher, 1990.
- 2. Edward de Bono, "Six Thinking Hats", Little Brown and Company Publisher, 1985.

3. Edward de Bono's Thinking Course, Video Lecture, Weblink: https://www.yputube.com/watch?v=AUq_AL2LNEw

Course Contents and Lecture Schedule

Module	Topic	No.	of	Course
No.	·	Hours		Outcome
1.	The way the mind works	1		CO1
1.1	Difference between lateral and vertical thinking	1		CO1
1.2	Attitudes towards lateral thinking	1		CO2
2.	Basic nature of lateral thinking	1		CO2
2.1	The use of lateral thinking techniques	1		CO2
2.2	The generation of alternatives	1		CO3
2.3	Challenging assumptions	1		CO3
2.4	Innovation	1		CO3
2.5	Suspended judgment	1		CO3
3.	Design	1		CO3
3.1	Dominant ideas and crucial factors	1		CO3
3.2	Fractionation	1		CO4
4.	The reversal method	1		CO4
4.1	Brainstorming	1		CO5
4.2	Analogies	1		CO5
4.3	Choice of entry point and attention area	1		CO5
4.4	Random stimulation	1		CO5
4.5	Concepts/divisions/polarization	1		CO5
4.6	The new word PO	2		CO6
5.	Blocked by openness	2		CO7
5.1	Description/problem solving/design	2		CO7

Course Designers:

S J. Thiruvengadam <u>sjtece@tce.edu</u>

18CHAA0	ENVIRONMENTAL SCIENCES	Category	L	T	P	Credit
		ES	1	0	1	-

Preamble

The objective of this course is intended to make the students to understand the basic concepts of environment, ecology and pollution of the current environmental issues and to participate in various activities on conserving and protecting the environment.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome	Weightage*** in %
CO1	Describe the importance and progression of ecological system	15%
CO2	Explain the significance of natural resources	10%
CO3	Demonstrate the effects of pollution on environment and human beings	15%
CO4	Practice the suitable management method during disaster episode	10%
CO5	Explain the ethics and values related to Environment	15%
CO6	Describe the Traditional values and Impact of modernization on Environment	10%
CO7	Carry out group activities	25%

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dor	main Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale	_		-	
CO1	TPS2	Understand	Respond	Guided	1.1,2.3.1,2.3.2,2.3.4
				Response	
CO2	TPS2	Understand	Respond	Guided	1.1,2.3.1,2.3.2,2.3.4
			-	Response	
CO3	TPS3	Apply	Value	Mechanism	1.1,2.1.1,2.1.5,2.4.1,4.1.2

CO4	TPS3	Apply	Value	Mechanism	1.1,2.4.1,2.4.7,4.1.1,4.1.2
CO5	TPS2	Understand	Respond	Guided	1.1,2.5.1,2.5.2,
				Response	
CO6	TPS2	Understand	Respond	Guided	1.1,2.4.7,2.5.4,
				Response	
CO7	TPS4	Analyse	Organise	Complex	3.1.1,3.1.2,3.1.3,3.1.4,4.1.1,4.1.2
		-		Overt	
				Responses	

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	-	-	-	-	L	S	-	-	-	-	-
CO2	М	-	-	-	-	L	-	L	-	-	-	-
CO3	М	М	-	-	L	М	S	-	-	-	-	-
CO4	М	-	L	L	L	М	М	-	-	-	-	-
CO5	L	-	-	-	-	-	-	М	-	-	-	-
CO6	L	L	-	-	-	-	М	-	-	-	-	-
CO7	S	M	М	M	М	М	-	-	S	M	M	-

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

		Continuous	Assessment	Assig	nment	#	
Cognitive	1	Γests					Terminal
Levels	1	2	3	1	2	3	Examinati on***
Remember	0	20	0				
Understand	0	40	0				Presentation
Apply	0	40	0	NA	NA	NA	on Case
Analyse	0	0	0	INA	INA	INA	study report
Evaluate	0	0	0				
Create	0	0	0				

[#] Assignment: Marks will be given for the review I, II & III of case study presentation.

- ❖ Each group comprise of maximum three students
- Students will submit the case study report similar to final year project report
- Evaluation of case study presentation is based on the approved rubrics

Method of Evaluation

a)Internal assessment

S.No	Description	Max.marks	Final conversion
1	CAT -II	50	40
2	Assignment marks (from Review I,II & III)	3 X 10 =30	10

^{***} Case study presentation and evaluation

Total	50

b) End semester examination – Case study presentation

b) The competer examination — Guest Stady procentation						
Performance Index	Marks per Individual					
Originality of the work	20					
Data collected	20					
Suggestion to overcome for the identified issues	20					
Final Presentation	40					
Total	100					

1. Model Titles for Case Study:

- 2. 1. Environmental impacts of quarry industries in Melur Taluk.
- 3. 2. A study on impacts of tanneries on ground water and soil quality in Dindigul district.
- 4. 3. Effect of pharmaceutical industry on groundwater quality in poikaraipatty village, Alagar
- 5. Kovil.
- 6. 4. Solid waste and waste water management in TCE hostel.
- 7. 5. Environmental effect of Kudankulam atomic power plant.
- 8. 6. Case study on effect of Sterlite industry.
- 9. 7. Effect on ground water and soil quality by dyeing industries in Tiruppur.
- 10. 8. Effect of textile wastes in Karur District.
- 11. 9. Segregation of waste and its recycling by Madurai Municipality at Vellakkal
- 12. 10. Effect of fire work waste on atmosphere in Sivakasi region

Sample Questions for Course Outcome Assessment**

Course Outcome 1(CO1):

- 4. Describe the Universal Energy flow model in an Ecosystem.
- 5. Discuss the conversion of one ecosystem into another ecosystem with example.
- 6. Explain the multidisciplinary nature of the environment.

Course Outcome 2 (CO2):

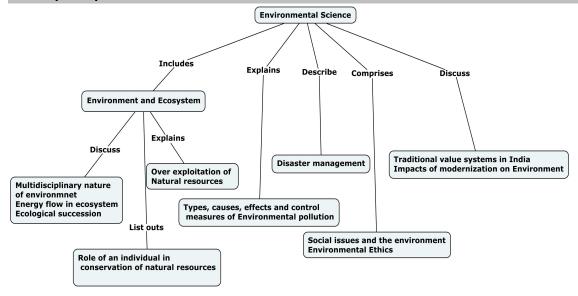
- 1. Summarize the importance of Natural resources to animals and human beings.
- 2. Describe the role of an individual in the conservation of Natural resources.

Course Outcome 3(CO3):

- 1. Demonstrate the effects and control measures of air pollution
- 2. Investigate the sources and management methods of e-waste.

Course Outcome 4(CO4):

- 1. Dramatize the mitigation methods adopted in severe cyclone affected areas.
- 2. Suggest the precautionary steps to prevent life from flood.


Course Outcome 5 (CO5):

- 1. Discuss the need for public awareness on environmental protection.
- 2. Identify the requirement for the equitable utilization of natural resources.

Course Outcome 6(CO6):

- 1. Describe the traditional value systems of India.
- 2. Recall the environmental related points discussed in our Indian Vedas.
- 3. List out the impacts of modernization on environment

Concept map:

Syllabus

Environment and Ecosystem - Multidisciplinary nature of environment- Ecosystem- Energy flow in ecosystem-Ecological succession-Over exploitation of Natural resources-Role of an individual in conservation of natural resources. **Environmental pollution and control -**

Environmental pollution – types, causes, effects and control measures - Disaster management strategies. **Environmental Ethics and Values -** Social issues and the environment -need for public awareness, Environmental Ethics- need for equitable utilization of natural resources- Traditional value systems in India, Impacts of modernization on Environment

Awareness and actual activities:

- ✓ Group meeting on water management, promotion of recycle use, reduction of waste,
- ✓ Plantation
- ✓ Cleanliness drive
- ✓ Drive on segregation of waste
- ✓ Energy saving
- ✓ Lectures by Environmentalist
- ✓ Slogan and poster making event

Learning Resources

- 1. Kaushik,A & Kaushik.C.P, Environmental Science and Engineering, 6th Edition, New Age International, 2018.
- 2. Erach Bharucha, Text book of Environmental studies for Undergraduate courses, 2nd Edtion, UGC, 2013.
- 3. Gilbert M.Masters, Introduction to Environmental Engineering and Sciences, 2nd Edition, Pearson, 2004.
- 4. Garg S.K & Garg, Ecological and Environmental studies, Khanna Publishrers, 2006.
- 5. Wright &Nebel, Environmental science towards a sustainable future, 8th Editon,Prentice Hall of Indial Ltd, 2002.
- 6. Documentary titled "HOME" by Yves Bertrand, Video Link: https://www.youtube.com/watch?v=jqxENMKaeCU

Course Contents and Lecture Schedule

Module	Topic	No.	of	Course
No.		Hours		Outcome
1.0	Environment and Ecosystem			
1.1	Multidisciplinary nature of environment-Ecosystem	1		CO1
1.2	Energy flow in ecosystem – Universal energy flow model	1		CO1
1.3	Ecological succession	1		CO1
1.4	Over exploitation of Natural resources	1		CO2
1.5	Role of individual in conservation of natural resources	1		CO2

2.0	Environmental pollution and control		
2.1	Environmental pollution – types(Air, Water,soil,Marine),	2	CO3
2.2	causes (gaseous, liquid, solid, plastic, e-waste, biomedical waste and radiations),	2	CO3
2.3	Effects and control measures of Pollution	2	CO3
2.4	Disaster managements during cyclone, Tsunami, flood, draught and earthquake	2	CO4
3.0	Environmental Ethics and Values		
3.1	Social issues and the environment -need for public awareness	1	CO5
3.2	Environmental Ethics- need for equitable utilization of natural resources	1	CO5
3.3	Traditional value systems in India,	1	CO6
3.4	Impacts of modernization on Environment	2	CO6
4.0	Awareness and actual activities		
4.1	Group meeting on water management, promotion of recycle use, reduction of waste	2	CO7
4.2	Plantation	1	CO7
4.3	Cleanliness drive	1	CO7
4.4	Drive on segregation of waste	1	CO7
4.5	Energy saving	1	CO7
4.6	Lectures by Environmentalist	1	CO7
4.7	Slogan and poster making event	Through online	CO7

Course Designers:

1. Dr.M.Kottaisamy

hodchem@tce.edu rajkumarsubramanium@tce.edu 2. Dr.S.Rajkumar

CURRICULUM AND DETAILED SYLLABI

FOR

B.E. EEE DEGREE PROGRAMME

THIRD & FOURTH SEMESTER

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING

(A Government Aided Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. EEE Degree Programme

COURSES OF STUDY

(For the candidates admitted from 2018-19)

THIRD SEMESTER

Course	Name of the Course	Category	No	o. of H	Credits	
Code				/ We		
			L	T	Р	
THEORY						
18EE310	Numerical methods and Complex	BS	3	-	-	3
	variables					
18EE320	DC machines and Transformers	PC	3	-	-	3
18EE330	Linear Integrated circuits	PC	3	-	-	3
18EE340	Digital Systems	PC	2	1	-	3
18EE350	Signals and Systems	PC	3	-	-	3
THEORY (CUM PRACTICAL	<u> </u>				L
18EE360	C and C++ Programming	ES	2	-	2	3
18ES390	Design Thinking	ES	1	-	2	2
PRACTICA	AL					
18EE370	DC Machines and Transformers	PC	-	-	2	1
	Lab					
18EE380	Integrated Circuits Lab	PC	-	-	2	1
	Total	I	1			22

FOURTH SEMESTER

Course	Name of the Course	Category No. of Hours			Credits	
Code				/ We	ek	
			L	T	Р	
THEORY						I
18EE410	Probability and Random processes	BS	3	-	-	3
18EE420	AC Machines	PC	3	-	-	3
18EE430	Measurements and Instrumentation	PC	3	-	-	3
18EE440	Control Systems	PC	2	1	-	3
18YYFX0	Foundation Elective I	PC	3	-	-	3
18EE490	Project Management	HSS	3	-	-	3
THEORY	CUM PRACTICAL					I
18EG470	Professional Communication	HSS	-	1	2	2
PRACTICA	AL					<u> </u>
18EE470	Measurement and Instrumentation Lab	PC	-	-	2	1
18EE480	AC Machines Lab	PC	-	-	2	1
	Total		ı			22
MANDATO	DRY AUDIT COURSE					1
18CH2B0	Constitution of India	AC	2	-	-	-

BS : Basic Science ES : Engineering Science PC : Programme Core

PE : Programme Elective

L : Lecture
T : Tutorial
P : Practical

Note:

1 Hour Lecture/week is equivalent to 1 credit

1 Hours Tutorial/week is equivalent to 1 credit

2 Hours Practical/week is equivalent to 1 credit

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. EEE Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2018-19onwards)

THIRD SEMESTER

S.No.	Course Code	Name of the Course	Duration of		Marks		Minimum for Pa				
			Terminal	Contin	Termin	Max.	Terminal	Total			
			Exam. in	uous	_ al	Mark	Exam				
			Hrs.	Asses	Exam	S					
				sment *							
THEORY											
1	18EE310	Numerical methods	3	50	50	100	25	50			
		and Complex									
		variables									
2	18EE320	DC machines and	3	50	50	100	25	50			
	1600320		3	30	30	100	25	30			
		Transformers									
3	18EE330	Linear Integrated	3	50	50	100	25	50			
		circuits									
4	18EE340	Digital Systems	3	50	50	100	25	50			
5	18EE350	Signals and	3	50	50	100	25	50			
		Systems									
6	18ES390	Design Thinking	-	50	50	100	25	50			
	Y CUM PRAC										
7	18EE360	C and C++	3	50	50	100	25	50			
		Programming									
PRACT	ICAL										
6	18EE370	DC Machines and	3	50	50	100	25	50			
		Transformers Lab									
7	18EE380	Integrated Circuits	3	50	50	100	25	50			
		Lab			-		-	-			
		Lab									

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

FOURTH SEMESTER

S.No.	Course Code	Name of the Course	Duration of		Marks		Minimum for Pa			
			Terminal Exam. in Hrs.	Contin uous Asses sment	Termin al Exam	Max. Mark s	Terminal Exam	Total		
THEOR	THEORY									
1	18EE410	Probability and	3	50	50	100	25	50		
		Random processes								
2	18EE420	AC Machines	3	50	50	100	25	50		
3	18EE430	Measurements and Instrumentation	3	50	50	100	25	50		
4	18EE440	Control Systems	3	50	50	100	25	50		
5	18YYFX0	Foundation Elective	3	50	50	100	25	50		
6	18EE490	Project Management	3	50	50	100	25	50		
	Y CUM PRAC									
7	18EG470	Professional Communication	3	50	50	100	25	50		
PRACT										
6	18EE470	Measurement and Instrumentation Lab	3	50	50	100	25	50		
7	18EE480	AC Machines Lab	3	50	50	100	25	50		
	TORY AUDIT									
8	18CHAB0	Constitution of India	-	50	50	100	25	50		

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

18EE310	NUMERICAL METHODS AND COMPLEX	Category	L	Τ	Р	Credit
	VARIABLES	BS	3	0	0	3

Preamble

A Electrical engineering student needs to know sufficient numerical tools and techniques for solving engineering problems arises in their field. This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. Analytic functions and Contour integration are extremely important while creating engineering models in control systems, communication systems, searching algorithms. The course is designed to impart the knowledge and understanding of the above concepts to Electrical Engineers and apply them in their areas of specialization.

Prerequisite

18MA110 Engineering Calculus

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage in %
CO1	Solve the system of linear algebraic equations and single non linear equations	15%
CO2	Estimate the intermediate value in discrete data by means of continuous functions	15%
CO3	Apply suitable methods to find numerical integration, numerical differentiation.	15%
CO4	Solve the Initial Value Problems in ODE using single step and multi step methods and Boundary Value Problems in PDE using finite difference methods	20%
CO5	Construction of analytic functions.	15%
CO6	Determine the value of integrals of functions of complex variable using Cauchy's integral formula, Cauchy's integral theorem, Cauchy's Residue theorem.	20%

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning D	omain Lev	rel	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			-	
CO1	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO2	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO3	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO4	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO5	TPS3	Apply	Value		1.1.1,2.1.1,2.1.5, ,4.3.3,4.4.4.
CO6	TPS3	Apply	Value		1.1.1,2.1.1,2.1.5, ,4.3.3,4.4.4.

Марі	Mapping with Programme Outcomes and Programme Specific Outcomes													
CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1.	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO2	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO3	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO4	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO5	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO6	S	М	L	L	-	-	-	М	М	М	-	М	S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels				Assigr	nment	Terminal Examination	
	1	2	3	1	2	3	
Remember	10	10	10	-	-	-	-
Understand	20	20	20	-	-	-	30
Apply	70	70	70	100	100	100	70
Analyse							
Evaluate							
Create							

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO 1):

1. Solve using bisection method the equation $x^3 - 5x + 3 = 0$

- **2.** Solve by Gauss Jordan method x + 2y + 3z = 6; 2x + 4y + z = 7; 3x + 2y + 9z = 11.
- **3.** An oscillating current in an electric circuit is described by $i = 9e^{-t} \cos(2\pi t)$, where t is in seconds. Determine a value of t such that i = 3.5. Using Newton's method.

Course Outcome 2(CO 2):

1. Use Newton Gregory formulae to find the value of y @ x=1.05 from the following

a. X: 1.0 1.1 1.2 1.3 1.4 1.5 b. Y: 0.841 0.891 0.912 0.964 0.985 1.015

2. Use Lagrange's formula to interpolate y @ x=5 given

a. X: 1 2 3 4 7 b. Y: 2 4 8 16 128

3. You measure the voltage drop *V* across a resistor for a number of different values of current *i*. The results are

i	0.25	0.75	1.25	1.5	2.0	
V	-0.45	-0.6	0.70	1.88	6.0	

Fit a fourth- order polynomial interpolation to estimate the voltage drop for i = 1.15. Interpret your results.

Course Outcome 3(CO 3):

1. Using Newton formulae for derivatives find the first and second derivative of \sqrt{x} at x=15 and at x = 25 from the following

X: 15 17 19 21 23 25
$$\sqrt{x}$$
: 3.873 4.123 4.359 4.583 4.796 5.000

2. Use Gauss's two point and three point quadrature formulae to find the value of

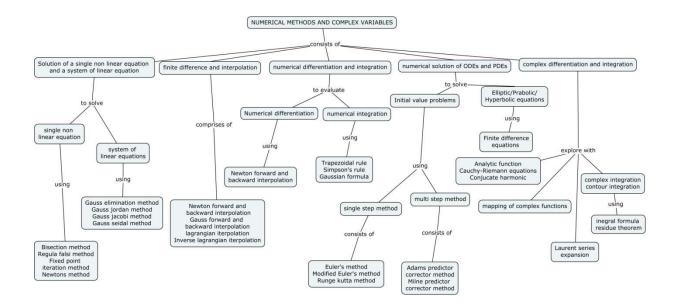
$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1+\sin^2\theta}$$

3. Faraday's law characterizes the voltage drop across an inductor as $V_{L}=L\frac{di}{dt}$ where $V_{L}=$ voltage drop (V), L= inductance (in henrys; 1H=1 V · s/A), i= current (A), and t= time (s). Determine the voltage drop as a function of time from the following data for an inductance of 4 H.

t	0	0.1	0.2	0.3	0.5	0.7
i	0	0.16	0.32	0.56	0.84	2.0

Course Outcome 4(CO4):

- 1. Using improved Euler's method find y(0.2) and y(0.4) given $y'=y+x^2$; y(0)=1. with h=0.2
- 2. Use Adam's Predictor and corrector formulae to evaluate y(0.8)given $y' = y x^2$; y(0) = 1; y(0.2) = 1.9218; y(0.4) = 14682; y(0.6) = 1.7379.
- 3. The voltage drop may be nonlinear and the circuit dynamics is described by a relationship such as $L\frac{di}{dt} + R\left[\frac{i}{l} \left(\frac{i}{l}\right)^3\right] = 0$, where i = current, L = inductance, and R = resistance. Solve for i, if L = 1, R = 1.5, and i(0) =0.5 and I is a known reference current equal to 1 Solve this problem with a numerical method.


Course Outcome 5(CO5):

- **1.** Show that $\psi = x^2 y^2 3x 2y + 2xy$ can represent the stream function of an incompressible fluid flow. Also find the corresponding velocity potential and the complex potential
- **2.** Find the equation of the orthogonal trajectories of the family of curves given by $2x x^3 + 3xy^2 = a$
- **3.** Find the image of the region 2 < |z| < 3 under the transformation $w = z^2$.

Course Outcome 6 (CO6):

- **1.** Evaluate using contour integration : $\int_{0}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$
- 2. Evaluate using Cauchy's integral formula $\int_C \frac{e^{2z}}{(z+1)^4} dz$ where C is |z|=2
- 3. Find the Laurent's series for $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ valid in the region i) |z| < 2 ii) 2 < |z| < 3 iii) |z| > 3.

Concept Map

Syllabus

Solution to a Single Non Linear Equation and a System of Linear Equations (6 hours)

Introduction to Numerical solution - Bisection method - Regula - Falsi method - Fixed point iteration method- Newton Raphson method method-Gauss elimination method - Gauss-Jordan method - Gauss Jacobi method and Gauss Seidel methods

Finite Differences and Interpolation

(5 hours)

Introduction to finite differences – Operators-Newton's forward and backward interpolation formula - Gauss forward and backward interpolation formula – Lagrange's interpolation formula for unequal intervals – Inverse interpolation .

Numerical Differentiation and Integration

(5 hours)

Introduction to Numerical differentiation - Newton' forward and backward formula for derivative - Introduction to Numerical integration -Trapezoidal rule - Simpson's rules - Gauss 2- point and 3- point formula .

Numerical Solution of ODEs and PDEs

(8 Hours)

Introduction to Numerical solution -Euler' method – Modified Euler's method –Runge –Kutta methods of order 4 – Predictor corrector methods – Adam's predictor corrector formula-Milne's Predictor corrector formula- Introduction to PDEs- types – Solution to Elliptic, Parabolic and Hyperbolic PDEs.

Complex Differentiation and Integration

(12 hours)

Introduction to functions of complex variables - Analytic functions - C-R equations - Conjugate harmonics - Standard functions (or mappings)z of a complex variable - z , 1/z , exp(z) - Laurent's series - Singularities - Residues - Cauchy's integral formula - Cauchy's residue theorem - Contour integration .

Learning Resources

- 1. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", Mc Graw Hill Higher Education, 2016.
- 2. S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 7th Edition, 2019.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", Pearson Education, New Delhi, 2018.

Course Contents and Lecture Schedule

Module	Topic	No. Of	Course
No.		Hours	Outcome
1.	Single Non Linear Equation and a System of Linear Equations		
1.1	Bisection, Regula Falsi methods	2	CO 1
1.2	Fixed point iteration method and Newton Raphson method	2	CO 1
1.3	Gauss elimination and Gauss Jordan Methods	1	CO 1
1.4	Gauss Jacobi and Gauss Seidel methods	1	CO 1
2	FINITE DIFFERENCES AND INTERPOLATION		
2.1	Introduction to operators and Newton forward and backward formulae	2	CO 2
2.2	Gauss forward and backward formulae	1	CO 2
2.3	Lagrange's formula and inverse interpolation	2	CO 2
3	NUMERICAL DIFFERENTIATION AND INTEGRATION		
3.1	Introduction Newton's formula for derivatives	1	CO 3
3.2	Trapezoidal rule and Simpson's rules for numerical integration	2	CO 3
3.3	Gauss 2 point and 3 point formulae	2	CO 3
4	Numerical Solution of ODEs and PDEs		
4.1	Introduction-Euler' method – Modified Euler's method	1	CO 4
4.2	Runge-Kutta methods	2	CO 4
4.3	Adam's and Milne's Predictor –Corrector methods	1	CO 4
4.4	Introduction to PDE and Solution of Elliptic equations	2	CO 4
4.5	Solution of Parabolic equations using Bender Schmidt and Crank Nicholson schemes	1	CO 4
4.6	Solution to Hyperbolic equations by explicit scheme	1	CO 4
5	Complex Differentiation and Integration		
5.1	Introduction and complex differentiation	2	CO 5
5.2	Analytic functions and harmonic conjugates	2	CO5
5.3	Standard mappings	2	CO 6
5.4	Complex integration and Cauchy's integral formula	2	CO 6

5.5	Cauchy's Residue theorem and Laurent's series	2	CO 6
5.6	Contour integration	2	CO 6
	TOTAL No. of Hours	36	

Course Designers

Dr.V.Gnanaraj - vgmat@tce.edu
 Dr.R.Rammohan - rr_maths@tce.edu
 Dr.B.Vellaikannan - bvkmat@tce.edu

18EE320	DC MACHINES AND TRANSFORMERS	Category	L	Т	Р	Credit
		PC	3	0	0	3

Preamble

The course aims in imparting fundamental knowledge of construction, types, Operation of Transformers and Direct current (DC) machines. DC machine is a highly versatile energy converting device. They can be designed to give a wide variety of voltage-current or speed- torque characteristics for both dynamic and steady-state operation. Due to their flexibility in speed control, DC motors are widely used in applications requiring a wide range of motor speeds or precise control of motor output. A transformer is a device used to transfer electrical energy from one circuit to another. It changes electricity from one level to other level of voltage using the properties of electricity.

Prerequisite

18EE230 : Electric Circuit Analysis

Course Outcomes

On the successful completion of the course, students will be able to

COs	Course outcomes	Weightage***
COS		in %
CO1	Explain the basic principles and construction of single phase, three phase transformer and application specific transformers	10
CO2	Explain the transformer working theory at no load and loaded conditions	15
CO3	Determine the performance of the given single transformer using equivalent circuit diagram and testing methods	20
CO4	Explain the construction, principle of operation and various types of DC machines.	15
CO5	Determine the characteristics and performance of DC machines at loaded conditions.	20
CO6	Explain the starting methods, speed control, and testing of DC Motors.	20

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learn	ing Domain	Level	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				

CO1	TPS2	Understand	Respond	1.2.4,
CO2	TPS 2	Understand	Respond	1.2.4, 2.2.1, 2.3.1
CO3	TPS 3	Apply	Value	1.2.4, 2.1.2,2.2.4
CO4	TPS 3	Apply	Value	1.2.4, 2.2.1, 2.3.1
CO5	TPS 2	Understand	Respond	1.2.4, 2.1.2,2.2.4
CO6	TPS 3	Apply	Value	1.2.4, 2.2.1, 2.3.1

Mapping with Programme Outcomes

COs	РО	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C 01	М	L						М		М			М	
CO2	М	L						М		М			М	
CO3	S	М	L	L				М		М			S	
CO4	S	М	L	L				М		М			S	
CO5	М	L						М		М			М	
CO6	S	М	L	L				М		М			S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

	Continuous				Assignme		
Cognitive	As	ssessment	Tests				Terminal
Levels	1	2	3	1	2	3	Examinati
							on
Remember	20	20	10	-	-	-	10
Understand	50	30	20	-	-	-	20
Apply	30	50	70	100	100	100	70
Analyse							
Evaluate							
Create							

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

1. Derive the EMF equation of single phase transformer.

- 2. Define the term transformation ratio in Transformer.
- 3. Mention the advantages of shell type transformer over core type transformer.

Course Outcome 2 (CO2):

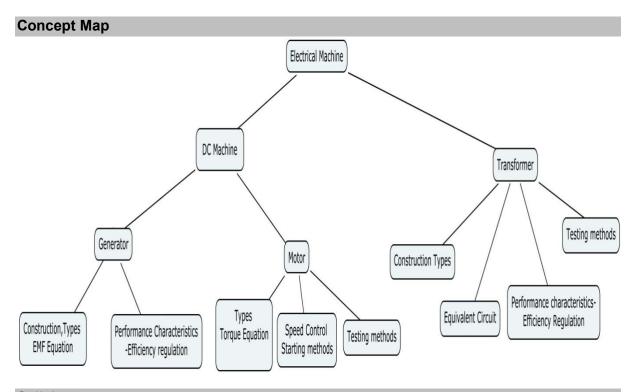
- 1. Draw the phasor diagram representing the various electrical parameters of the transformer with Resistive load and inductive load conditions.
- A 400/200Volts Single phase transformer is supplying a load of 30 Amperes at a
 power factor of 0.8 lagging. On no-load the current and power factor is 2.1 Amperes
 & 0.2 lagging respectively on high voltage side. Calculate the current taken from the
 supply.
- 3. A 300kVA transformer has a primary winding resistance of 0.4Ω and a secondary winding resistance of 0.0015Ω . The iron loss is 2kW and the primary and secondary voltages are 4kV and 200V respectively. If the power factor of the load is 0.78, determine the efficiency of the transformer (a) on full load, and (b) on half load.

Course Outcome 3 (CO3)

- 1. A transformer has 600 primary turns and 150 secondary turns. The primary and secondary resistance's are 0.25Ω and 0.01Ω respectively and the corresponding leakage reactance's are 1.0Ω and 0.04Ω respectively. Determine (a) the equivalent resistance referred to the primary winding, (b) the equivalent reactance referred to the primary winding, (c) the equivalent impedance referred to the primary winding, and (d) the phase angle of the impedance.
- 2. The resistance and reactance of a 10 kVA, 400/200Volts, Three phase transformer are 2% and 10% respectively. If the constant losses in the machine is 1%, Calculate the maximum possible percentage efficiency of the transformer.
- 3. 250kVA transformer has a full load copper loss of 3kW and an iron loss of 2kW. Calculate (a) the output kVA at which the efficiency of the transformer is a maximum, and (b) the maximum efficiency, assuming the power factor of the load is 0.80.

Course Outcome 4 (CO4)

- 1. Explain the operation of on-load tap changer used in Transformer.
- 2. List the advantages of three phase transformers.
- 3. Explain the operation of welding transformers.


Course Outcome 5 (CO5)

- 1. Draw the circuit diagrams for conducting Open Circuit Test and Short circuit test on a single phase transformer. Also explain, how the efficiency and voltage regulation can be estimated by these test.
- 2. Two similar 250/1000 Volts, 10 KVA Transformers are being tested by the sumpner's test method. At rated voltage of 250volts on the Low voltage side the wattmeter reading is found 250watts and ammeter reading is 4Ampers. On the series connected High voltage side, a voltage of 80Volts drives a rated full load current of

- 10 Amperes. Calculate the efficiency of the transformer at 80% of its full load at 0.9 Power factor leading?
- 3. State the advantages of Sumpner's test for Transformer.

Course Outcome 6 (CO6)

- 1. A DC series motor drives a load, the torque of which varies as the square of the speed. The motor takes a current of 20 A when the speed is 800 rpm. Calculate the speed and current when the motor field winding is shunted by a diverter of the same resistance as that of the field winding.
- 2. A 4 pole lap wound 900 rpm shunt generator has an armature resistance of 0.2Ω and field resistance of 230Ω . There are 30 slots with 15 conductors/slot. If the load resistance is 10Ω and terminal voltage is 230 V, find the useful flux/pole. The contact drop/brush is 1 V.
- 3. A long shunt generator running at 1000 rpm supplies 22 Kw at 220 V. Ra=0.05 Ω , Rsh=110 Ω , Rse=0.06 Ω . The overall efficiency at above load is 88%. Find (a) copper loss (b) iron and friction loss.
- 4. Explain the methods of sped control of DC shunt motors.

Syllabus

DC Generators

Construction-Principle of operation, Emf equation-types, Armature reaction-commutation, Characteristics of generators, Losses & efficiency, Regulation, parallel operation, Applications

DC Motors

Principle of operation, Torque equation, Types-characteristics, Losses-Efficiency, Speed control and starters, Swinburne's Test ,Heat run Test ,Hopkinson's Test

Transformers

Transformer construction and principle, Ideal Transformer, EMF equation, Transformer on no load & load Losses, efficiency and regulation, All day efficiency, Auto transformer, three phase transformer connections, Parallel operation of Transformers, Welding transformers, Tap changers on load & off load, OC&SC Test on transformers, Sumpners Test

Learning Resources

- 1. D.P.Kothari & I.J.Nagrath, "Electrical Machines", Tata-McGrawhill, Newdelhi, 5th Edition, 2010.
- 2. R.K.Rajput, "Electrical Technology", Laxmi Publications, 3rd edition, 2005.
- 3. Vincent Deldoro, "Electromechanical Energy Conversion" PHI III edition,
- 4. M.G.Say, Theory and performance of electrical machines, Tata-Mcgraw hill

Course C	Contents and Lecture Schedule		
Module	Tamia	No. of	Course
No.	Topic	Lectures	Outcome
1	DC Generators		
1.1	Construction-Principle of operation	1	CO4
1.2	Emf equation-types	1	CO4
1.3	Armature reaction-commutation	1	CO5
1.4	Characteristics of generators	2	CO5
1.5	Losses & efficiency	2	CO5
1.6	Condition for maximum efficiency	1	CO5
1.7	Regulation-parallel operation-Applications	1	CO5
2.0	DC Motors		
2.1	Principle of operation	1	CO4
2.2	Torque equation	1	CO4
2.3	Types-characteristics	1	CO4
2.4	Losses-Efficiency	1	CO5
2.5	Speed control and starters	1	CO5
2.6	Starter motor -Applications	1	CO5
3.0	Transformers		
3.1	Transformer construction and principle	2	CO1
3.2	Ideal Transformer, EMF equation	2	CO2
3.3	Transformer on no load & load	2	CO2
3.4	Equivalent circuit of the transformer	3	CO3
3.5	Losses, efficiency and regulation, All day efficiency	3	CO3
3.6	Auto transformer, three phase transformer connections	2	CO3
3.7	Parallel operation of Transformers, Welding transformers,	1	CO1
4.0	Tap changers on load & off load.		
4.0	Testing of DC Machines and transformers		1

Module	Topic	No. of	Course
No.	Горіс	Lectures	Outcome
4.1	OC&SC Test on transformers	1	CO6
4.2	Sumpners Test	1	CO6
4.3	Swinburne's Test	1	CO6
4.4	Heat run Test	1	CO6
4.5	Hopkinson's Test	1	CO6
4.6	Testing standards	1	CO6
	TOTAL	36	

Course Designers:

1. Dr. V. Saravanan vseee@tce.edu

2 Dr.R. Rajan Prakash r_rajanprakash@tce.edu

3 Dr.V.Mahesh maheshv@tce.edu

18EE330	LINEAR INTEGRATED CIRCUITS	Category	L	Τ	Р	Credit
		PC	3	•	ı	3

Preamble

A linear integrated circuit is a solid-state analog device characterized by a theoretically infinite number of possible operating states. It operates over a continuous range of input levels. Linear ICs are employed in audio amplifiers, Analog to Digital converters, averaging amplifiers, differentiators, DC amplifiers, integrators, multivibrators, oscillators, audio filters, and sweep generators. Some devices contain several amplifiers within a single housing.

Prerequisite

18EE250 - Electronics Circuits and devices

18EE270- Electronics Circuits and devices Lab

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the Linear Integrated Circuits fabrication techniques	10
CO2	Explain the operation amplifier and its characteristics.	10
CO3	Design the various circuits using operational amplifiers for the given specifications	50
CO4	Design Multivibrator circuits using 555 timer IC	10
CO5	Design voltage regulators using fixed and variable voltage regulator ICs	10
CO6	Explain the Phase Locked Loops, Analog to digital converters and Digital to Analog converters	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	ain Level	CDIO	Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale			-	(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.2.5, 2.1.1, 2	.1.5, 2.3.1,
					2.4.4,3.2.3	

CO2	TPS2	Understand	Respond	1.2.5, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO3	TPS3	Apply	Value	1.2.5, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO4	TPS3	Apply	Value	1.2.5, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO5	TPS3	Apply	Value	1.2.5, 2.1.1, 2.1.5, 2.3.1,
		-		2.4.4
				3.2.3
CO6	TPS2	Understand	Respond	1.2.5, 2.1.1, 2.1.5, 2.3.1,
				2.4.4
				3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	М	L						М		М				M
CO 3	S	М	L	L				М		М				S
CO 4	S	М	L	L				М		М				S
CO 5	S	М	L	L				М		М				S
CO 6	М	L						М		M				M

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive			nuous ssment	Tests	Assignm	nent	Terminal	
Levels		1	2	3	1	2	3	Examination
Remember	20		20	20	-	-	-	20
Understand	50		40	40	-	-	-	40
Apply	30		40	40	100	100	100	40
Analyse								
Evaluate								
Create								

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. What are the advantages of IC over discrete component circuits?
- 2. Mention the two basic thick film processes.
- 3. Explain the different process involved in IC fabrication.

Course Outcome 2 (CO2):

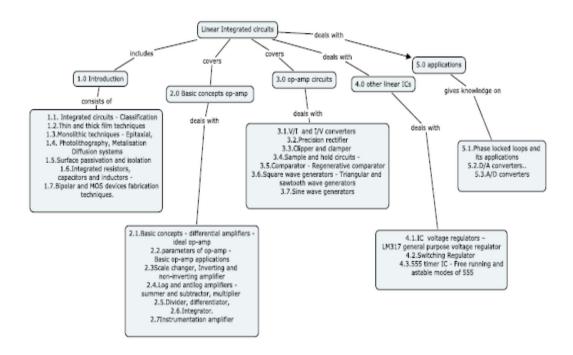
- 1. What is a scale changer?
- 2. Determine Input Offset voltage for inverting amplifier.
- 3. Explain the differential amplifier with neat sketch.

Course Outcome 3 (CO3)

- 1. Design a non-inverting summing amplifier with a gain of 2.
- 2. Explain the working of a positive and negative clipper for both +ve and –ve reference values.
- 3. Explain the working of an instrumentation amplifier with neat sketch

Course Outcome 4(CO4)

- 1. Define free running oscillator.
- 2. Design a monostable multivibrator for a time delay of 1ms using 555 Timer IC
- 3. Design a astable multivibrator for a frequency of 1 KHz using 555 Timer IC


Course Outcome 5 (CO5)

- 1. Design a voltage regulator using 723 to get voltage output of 3V
- 2. What is the function of voltage regulator?
- 3. Explain the protections used in 78xx voltage regulator.

Course Outcome 6 (CO6)

- **1.** Explain the operation of PLL with neat block diagram.
- 2. Discuss the applications of a PLL as a frequency translator and frequency divider.
- 3. Explain the VCO with neat sketch.

Concept Map

Syllabus

Introduction: Integrated circuits – Classification, Thin and thick film techniques Monolithic techniques - Epitaxial, Photolithography, Metalisation, Diffusion systems Surface passivation and isolation Integrated resistors, capacitors and inductors - Bipolar and MOS devices fabrication techniques.

Operational amplifier: Basic concepts - differential amplifiers - ideal op-amp parameters of op-amp - Basic op-amp applications Scale changer, Inverting and non-inverting amplifier summer and subtractor, Log and antilog amplifiers multiplier Divider, differentiator, Integrator. Instrumentation amplifier

Op-amp circuits: V/I and I/V converters Precision rectifier Clipper and clamper Sample and hold circuits - Active filters - Comparator - Regenerative comparator Square wave generators - Triangular and saw tooth wave generators Sine wave generators, Application of Non linear Op Amp.

Other Linear ICs: IC voltage regulators – LM317 general purpose voltage regulator Switching Regulator 555 timer IC - Free running and Astable modes of 555 Applications, Phase locked loops and its applications, D/A converters, A/D converters, Introduction to Field Programmable Analog Array(FPAA)

Learning Resources

- 1. Ramakant A. Gayakwad, Op-amps and Linear Integrated Circuits, Pearson Education; Fourth edition, 2015
- 2. K.R.Botkar, Integrated Circuits, Hanna Publishers, 2008
- 3. Roy choudhury and shall B.Jain, Linear Integrated circuits, Wiley Eastern Ltd, 2010 4th edition
- 4. Jacob Millman & Christos C.Halkias- Integrated electronics, McGraw Hill Education; 2 edition (1 July 2017)
- 5. Robert F. Coughlin &Frederick F DriscollOperational Amplifiers and Linear Integrated Circuits, Pearson; 4 edition (1 November 1990)
- 6. NPTEL courses web:http://nptel.ac.in/courses/108106068/
- 7. MOOCs course link: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

Course Contents and Lecture Schedule

S.No	Topics	No. of Periods	COs
1	Introduction		
1.1	Integrated circuits - Classification	1	CO1
1.2	Thin and thick film techniques	1	CO1
1.3	Monolithic techniques - Epitaxial,	1	CO1
1.4	Photolithography, Metalisation, Diffusion systems	1	CO1
1.5	Surface passivation and isolation	1	CO1
1.6	Integrated resistors, capacitors and inductors -	1	CO1
1.7	Bipolar and MOS devices fabrication techniques.	1	CO1
2	Operational amplifier		
2.1	Basic concepts - differential amplifiers - ideal op-amp	2	CO2
2.2	parameters of op-amp - Basic op-amp applications	1	CO2
2.3	Scale changer, Inverting and non-inverting amplifier	1	CO2
2.4	Log and antilog amplifiers -summer and subtractor,	1	CO2
2.5	Multiplier Divider,	1	CO2
2.6	Differentiator, Integrator.	2	CO2
2.7	Instrumentation amplifier	1	CO2
3	Op-amp circuits		
3.1	V/I and I/V converters	1	CO3
3.2	Precision rectifier	1	CO3
3.3	Clipper and clamper	1	CO3
3.4	Active Filters	2	CO3
3.5	Comparator - Regenerative comparator - Sample and hold circuits	1	CO3
3.6	Square wave generators - Triangular and sawtooth wave generators	2	CO3
3.7	Sine wave generators	1	CO3
4	Other Linear ICs		
4.1	IC voltage regulators – LM317 general purpose voltage regulator	1	CO5

4.2	Switching Regulator	2	CO5
4.3	555 timer IC –Astable and monostable modes of 555	2	CO4
5	Applications		
5.1	Phase locked loops and its applications	2	CO6
5.2	D/A converters.	2	CO6
5.3	A/D converters	2	CO6
	Total	36	

Course Designers:

1. Dr. S. Arockia Edwin Xavier - saexeee@tce.edu

2. Dr.R.Helen --rheee@tce.edu

3. Dr Sivasankar - qsiva@tce.edu

18EE340	DIGITAL SYS	EMS	Category	L	Τ	Р	Credit
			PC	2	1	0	3

Preamble

Digital systems encompass the circuits, that process signals by discrete bands of analog levels, rather than by continuous ranges (as used in analog electronics). All levels within a band represent the same signal state. Because of this discretization, relatively small changes the analog signal levels due to manufacturing tolerance, signal attenuation or parasitic noise do not leave the discrete envelope, and as a result are ignored by signal state sensing circuitry. In most cases the number of these states is two, and they are represented by two voltage bands: one near a reference value typically termed as "ground", and the other a value near the supply voltage. These correspond to the "false" ("0"), and "true" ("1"), values of the Boolean domain, respectively, yielding binary code. Digital electronic circuits are usually made from large assemblies of logic gates. Computercontrolled digital systems can be controlled by software, allowing new functions to be added without changing hardware.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to:

СО	Course Outcome	Weightage***
Number		in %
CO1	Represent the given data in different number systems and perform	8
	arithmetic operations and Explain various digital codes	
CO2	Explain the operation of logic gates and digital logic families	10
CO3	Apply Boolean algebra for minimizing the given function to	5
	represent in standard and canonical forms	
CO4	Design combinational logic circuits for the given applications	30
CO5	Design synchronous sequential circuits for the given requirement	20
CO6	Explain the characteristics and working of asynchronous	8
	sequential logic circuits	
CO7	Implement simple combinational and sequential circuits using	7
	verilog simulation tool	
CO8	Implement the given digital application using Programmable Logic	12
	Devices and illustrate the function of memories.	

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dor	main Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			-	

CO1	TPS2	Understand	Respond	1.2.6, 2.3.2
CO2	TPS2	Understand	Respond	1.2.6, 2.3.1, 2.5.4
CO3	TPS3	Apply	Value	1.2.6, 2.3.4
CO4	TPS3	Apply	Value	1.2.6, 2.1.1, 2.1.5, 2.3.1, 2.4.3,
				2.4.4
CO5	TPS3	Apply	Value	1.2.6, 2.1.1, 2.1.5, 2.3.1, 2.4.3,
		,		2.4.4
CO6	TPS2	Understand	Respond	1.2.6
CO7	TPS3	Apply	Value	1.2.6, 2.5.4
CO8	TPS3	Apply	Value	1.2.6, 2.5.4

Mapp	Mapping with Programme Outcomes													
СО	РО	РО	РО	РО	РО	РО	РО	РО	РО	P01	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1.	М	L						М		M				М
CO2.	М	L						М		M				М
CO	S	М	L	L				М		M				S
3														
CO	S	М	L	L				М		M				S
4														
CO	S	М	L	L				М		М				S
5.														
CO	М	L						М		М				М
6														
CO	S	М	L	L	М			М		М				S
7														
CO	S	М	L	L				М		М				S

Assessment Pattern

Cognitive	Continuous Assessment Tests			Assig	gnment	Terminal					
Levels		1 2	3	1	2	3	Examinati				
							on				
Remember	20	20	20	-	-	-	20				
Understand	50	30	30	-	-	-	30				
Apply	30	50	50	100	100	100	50				
Analyse											
Evaluate											
Create											

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

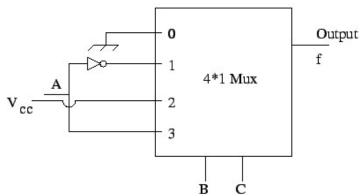
1. Perform the following binary operations:

10110110+10111000

11111000-10101010

2. Convert the given hexa-decimal numbers to binary numbers: 9BC2, FDA5.A2

Course Outcome 2 (CO2):


- 1. Explain the operation of CMOS 2 input NAND gate with circuit diagram.
- 2. List the characteristics of TTL and CMOS logic families.
- 3. Define Propagation delay, fan-in and fan-out of a logic gate.

Course Outcome 3 (CO3)

- 1. Simplify the given logic expression using Demorgan's theorem: Y=(A+B+(AB)'+CD)'
- 2. Prove the commutative and distributive laws in Boolean algebra.
- 3. Simplify the given logic expression: Y=ABC+AB'C+A'B'C'+AB'C'

Course Outcome 4 (CO4)

- 1. Simplify the logic function $F(A,B,C,D) = \Sigma m(0,1,2,5,6,8) + d(3,4,7,14)$ using K-map in SOP form and implement it using NAND gates. Write Verilog code.
- 2. Obtain the Boolean expression for 'f' in the following circuit

3. Construct a Karnaugh Map for the Boolean function Y= ABC+ABC'+A'B'C+A'BC and simplify the function.

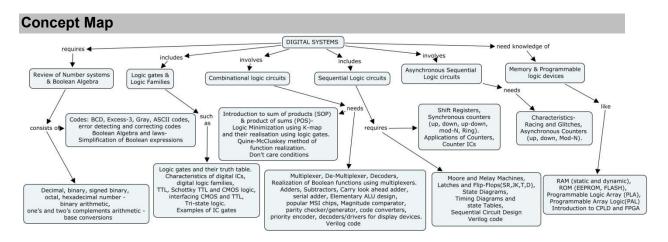
Course Outcome 5 (CO5)

1. In an industrial process, it is required to count down the product in the presence of a sensor signal x. Design a 2-bit count - down counter with two J-K flip-flops and one input x for this purpose. When x= 0, the state of the flip-flops does not change. When x=1, the state sequence is 11,10,01,00 and repeat. Provide suitable state diagram and table. Also provide characteristic and excitation table of J-K flip flop.

2. A sequential circuit consists of two T flip flops and one input x and one output y. Obtain the state table and logic diagram if the flip flop input equations and output equation are as follows

TA = Ax + B'

TB = A'x + B


Y=x'

Course Outcome 6 (CO6)

- 1. Design Mod-10 ripple down counter using T flipflops.
- 2. Define Glitch in a digital circuit.

Course Outcome 7 (CO7)

- 1. Design a combination circuit using PLA with three inputs and three outputs. When binary input is 0,1,2,3, the binary output is one greater than the input. When the binary input is 4,5,6,7, the binary output is one lesser than the input.
- 2. Design a 2-bit comparator circuit using PAL with three outputs representing equal, greater than and lesser than.

Syllabus

Review of Number systems & Boolean Algebra: Decimal, binary, signed binary, octal, hexadecimal number - binary arithmetic, one's and two's complements arithmetic - base conversions - Codes: BCD, Excess-3, Gray, ASCII codes, error detecting and correcting codes, Boolean Algebra and laws- Simplification of Boolean expressions - Canonical and Standard forms

Logic gates & Logic Families: Logic gates and their truth table. Characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic. Examples of IC gates

Combinational logic circuits: Introduction to sum of products (SOP) & product of sums (POS)- Logic Minimization using K-map and their realisation using logic gates. **Quine-**

McCluskey method of function realization. Don't care conditions, Multiplexer, De-Multiplexer, Decoders, Realization of Boolean functions using multiplexers. Adders, Subtractors, Carry look ahead adder, serial adder, Elementary ALU design, popular MSI chips, Magnitude comparator, parity checker/generator, code converters, priority encoder, decoders/drivers for display devices.

Sequential Logic circuits: Moore and Melay Machines, Latches and Flip-Flops(SR,JK,T,D), State Diagrams, Timing Diagrams and state Tables, Sequential Circuit Design, Shift Registers, Synchronous counters (up, down, up-down, mod-N, Ring). Applications of Counters, Counter ICs

Asynchronous Sequential Logic circuits: Characteristics- Racing and Glitches, Asynchronous Counters (up, down, Mod-N).

Introduction to Verilog simulation tool: Verilog code for combinational and sequential circuits

Memory & Programmable logic devices: RAM (static and dynamic), ROM (EEPROM, FLASH), Programmable Logic Array (PLA), Programmable Array Logic(PAL) Introduction to CPLD and FPGA

Learning Resources

- 1. M.Morris Mano and Michael D.Ciletti, Digital Design, Sixth Edition, Pearson Prentice Hall, 2018
- 2. RP Jain, Modern Digital Electronics, fourth edition, Tata Mcgraw Hill Publishers, 2010
- 3. Floyd and Jain, Digital Fundamentals, 8th Edition, Pearson Education, 2009
- 4. Charles H.Roth and Lizy K.John, Digital system design using VHDL, 2nd edition, Cengage learning, 2007
- 5. Donald Leach, Albert Malvino and Goutam Saha, Digital Principles and Applications, McGraw Hill Publishers, 2010
- 6. J. F. Wakerly Digital Design Principles and Practices, 4th edition, Prentice Hall of India. 2008.
- 7. NPTEL course: https://onlinecourses.nptel.ac.in/noc18_ee33

Course Contents and Lecture Schedule

Module No.	Topic	No. Lecture Hours	of	COs
1	Review of Number systems & Boolean Algebra:			
1.1	Decimal, binary, signed binary, octal, hexadecimal number	1		CO1
1.2	binary arithmetic, one's and two's complements arithmetic - base conversions ,Codes: BCD, Excess-3, Gray	2		CO1
1.3	ASCII codes, error detecting and correcting codes	1		CO1

1.4	Boolean Algebra and laws, Simplification of Boolean expressions, Canonical and Standard forms	2	CO3
2	Logic gates & Logic Families:		
2.1	Logic gates and their truth table. Characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic,	2	CO2
2.2	Interfacing CMOS and TTL, Tri-state logic. Examples of IC gates	2	CO2
3	Combinational logic circuits:		
3.1	Introduction to sum of products (SOP) & product of sums (POS)- Logic Minimization using K-map and their realisation using logic gates	2	CO4
3.2	Quine-McCluskey method of function realization. Don't care conditions, Multiplexer, De-Multiplexer,	3	CO4
3.3	Decoders, Realization of Boolean functions using multiplexers. Adders, Subtractors, Carry look ahead adder, serial adder,	2	CO4
3.3	Elementary ALU design, popular MSI chips, Magnitude comparator, parity checker/generator, code converters, priority encoder, decoders/drivers for display	2	CO4
4	Sequential Logic circuits:		
4.1	Moore and Melay Machines, Latches and Flip-Flops(SR,JK,T,D),	2	CO5
4.2	State Diagrams, Timing Diagrams and state Tables,	2	CO5
4.3	Sequential Circuit Design, Shift Registers, Synchronous counters (up, down, up-down, mod-N, Ring).	3	CO5
4.4	Applications of Counters, Counter ICs	1	CO5
5	Asynchronous Sequential Logic circuits:		
5.1	Characteristics- Racing and Glitches	1	CO6
5.2	Asynchronous Counters (up, down, Mod-N)	2	CO6
6	Introduction to Verilog simulation tool:		
6.1	Verilog code for combinational and sequential circuits	2	CO7
7	Memory, ADC, DAC & Programmable logic devices:		
7.1	RAM (static and dynamic), ROM (EEPROM, FLASH)	2	CO8
7.2	Programmable Logic Array (PLA), Programmable Array Logic(PAL)	2	CO8
7.3	Introduction to CPLD and FPGA	1	CO8
	Total	36	

Course Designers:

Dr.M.Saravanan mseee@tce.edu
 Dr.D.Kavitha dkavitha@tce.edu

3. Dr.B.Ashok Kumar

ashokudt@tce.edu

18EE350	SIGNALS AND SYSTEMS	Category	L	Т	Р	Credit
		PC	3	-	-	3

Preamble

Signal processing plays an extremely important and continually growing role in a wide variety of engineering systems. Furthermore, technology and algorithms for signal processing continue to develop rapidly. While only a short time ago signal processing systems were predominantly analog, integrated circuit technology has made digital signal processing often preferable and more cost-effective. This course is an introduction to the basic concepts and theory of analog and digital signal processing.

Prerequisite

18MA110 Engineering Calculus

• 18MA210 Matrices and Ordinary Differential Equations

• 18EE230 Electric Circuit Analysis

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Indentify the type of given signals and systems.	10
CO2	Analyze the Time domain behaviour of a given Continuous time LTI system using Laplace Transform.	20
CO3	Analyze the Time domain behaviour of a given Discrete Time LTI system using Z-Transform.	20
CO4	Apply Fourier transform for frequency domain analysis of a given Continuous time LTI system	20
CO5	Apply Discrete Fourier transform for frequency domain analysis of a given Discrete time LTI system	20
CO6	Explain the concept of sampling, sampled spectra and reconstruction of signals.	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components					
#	Proficiency	Cognitive	ive Affective Psychomotor			(X.Y.Z)				
	Scale			-						
CO1	TPS2	Understand	Respond		1.2.7,	2.1.1,	2.1.5,	2.3.1,		

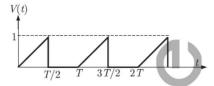
				2.4.4, 3.2.3
CO2	TPS4	Analyse	Organise	1.2.7, 2.1.1, 2.1.4, 2.1.5,
		-		2.3.1, 2.4.4, 3.2.3
CO3	TPS4	Analyse	Organise	1.2.7, 2.1.1, 2.1.4, 2.1.5,
		-		2.3.1, 2.4.4, 3.2.3
CO4	TPS3	Apply	Value	1.2.7, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO5	TPS3	Apply	Value	1.2.7, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO6	TPS2	Understand	Respond	1.2.7, 2.1.1, 2.1.5, 2.3.1,
			-	2.4.4, 3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	РО	PO	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	s	М	L	L	L			М		М				S
CO 3	s	М	L	L	L			М		М				S
CO 4	S	М	L	L				М		М				S
CO 5	S	М	L	L				М		М				S
CO 6	М	L						М		М				М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain


Cognitive	Continuous Assessment Tests			Assig	nment	Terminal		
Levels	1	2	3	1	2	3	Examination	
Remember	20	20	20	-	-	-	20	
Understand	40	40	40	-	-	-	40	
Apply	40	40	40	50	50	100	40	
Analyse				50	50	-		
Evaluate								
Create								

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

1. Find the period of the signal $x(t) = 8 \sin(0.8\pi t + \pi/4)$.

- 2. The system represented by the input –output relationship $y(t) = \int_{-\infty}^{5t} x(\tau) d\tau$, t > 0 check whether the system is linear and causal.
- 3. For the triangular wave from shown in the figure, find the RMS value of the Voltage.

Course Outcome 2(CO2):

- 1. Given two continuous time signals $x(t) = e^{-t}$ and $y(t) = e^{-2t}$ which exist for t > 0, find the convolution $z(t) = x(t)^*y(t)$
- 2. Let the Laplace transform of a function f(t) which exists for t > 0 be F1(s) and the Laplace transform of its delayed version $f(t \tau)$ be F2(s). Let F1 * (s) be the complex conjugate of F1(s) with the Laplace variable set $s = \sigma + j\omega$. If $G(s) = \frac{F2(S)F1*(S)}{|F1(S)|^2}$ then determine the inverse Laplace transform of G(s).
- 3. The response h(t) of a linear time invariant system to an impulse $\delta(t)$, under initially relaxed condition is $h(t) = e^{-t} + e^{-2t}$. Find the response of this system for a unit step input u(t).

Course Outcome 3(CO3):

- 1. If $x[n] = (1/3)^n (1/2)^n u[n]$, then find the region of convergence (ROC) of its z -transform in the z -plane.
- 2. The z-transform of a signal x[n] is given by $4z^{-3} + 3z^{-1} + 2 6z^2 + 2z^3$ It is applied to a system, with a transfer function $H(z) = 3z^{-1} 2$, Determine the output y[n].
- 3. Given $X(z) = \frac{z}{(z-a)^2}$ with |z| > a, find the residue of $X(z)z^{n-1}$ at z = a for $n \ge a$.

Course Outcome 4 (CO4):

- 1. Define Fourier transform pair.
- 2. Let x(t) be a periodic signal with time period T, Let $y(t) = x(t t_0) + x(t + t_0)$ for some t_0 . The Fourier Series coefficients of y(t) are denoted by b_k . If $b_k = 0$

for all odd k, then find t_0 .

3. Consider an LTI system initially at rest described by the difference equation v[n] - av[n-1] = x[n], |a| < 1. Find frequency response $H(e^{jw})$

Course Outcome 5 (CO5):

- 1. State time and frequency shifting properties of DFT.
- 2. Find 4- point DFT of the given sequence $x(n)=(1/4)^n$. Plot its magnitude and phase.
- 3. Consider two real sequences x_1 (n) = {3,4,0,2,} and x_2 (n) = {3,2,1,2} . Find x_3 (n) such that X_3 (n) = X_1 (n) and also obtain the valve of X_3 (n)

Course Outcome 6(CO6):

- 1. Define Shannon's sampling theorem.
- 2. Find the discrete sequence for given continuous signal $x(t)=\cos 200\pi t + 10\sin 2000\pi t$. Assume fs=Nyquist rate.
- 3. Find the quantization error (using truncation) for the given signal. $X(n)=1.2^{n}$; 0≤n≤4.

Concept Map Signals and Systems Signal Properties Requires knowledge Special Signals System Sampling System Properties Analysis Representation including Differential , include Difference equations Reconstruction Frequency Domain to get Time Domain Transfer function **Analysis** using Sampled Spectra Analysis State Space for continuous time systems includes Models is done with help of for discrete time systems Impulse Response Zero First Ideal order Hold is done with help of Step Response Interpolator Convolution Hold Fourier Transforms for continuous time system is Discrete Fourier Transforms for discrete time system is analyzed with requires help of analyzed with leads to knowledge of help of leads to Discrete Time Laplace Transforms Z Transforms Fourier Series

Syllabus

Introduction to Signals and Systems:

Classification of Signals and systems- Signal properties: periodicity, absolute integrability, determinism and stochastic character. Test signals: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability. Examples.

Time domain behaviour of continuous and discrete time LTI systems

Fourier Transforms

Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.

Fourier, Laplace and z- Transforms

Laplace Transform for continuous time signals and systems, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis. Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The DiscreteTime Fourier Transform (DTFT), the Discrete Fourier Transform (DFT) its properties. Parseval's Theorem, Fast Fourier Transform (FFT) - radix 2

Sampling and Reconstruction

The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Applications of signal and system- introduction to waveletTransform

Learning Resources

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and Systems", Pearson India Education Services Pvt. Ltd, 2016.
- 2. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 3. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.
- 4. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
- 5. https://nptel.ac.in/courses/117101055/
- 6. https://www.edx.org/course/signals-and-systems

Course Contents and Lecture Schedule

Module	Topic	No.	of	Course
No.		Hours		Outcome
1.	Introduction to Signals and Systems			
1.1	Classification of Signals and systems	2		CO1
1.2	Signal properties: periodicity, absolute integrability,	2		CO1
	determinism and stochastic character			
1.3	Test signals: The unit step, the unit impulse, the sinusoid, the complex exponential signals	1		CO1
1.4	Time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals	1		CO1
1.5	System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability,	2		CO1

	realizability. Examples.		
2	Time domain behaviour of continuous and discrete time LTI systems		
2.1	Impulse response and step response	1	CO2 &CO3
2.2	Convolution	1	CO2 &CO3
2.3	Input-output behaviour with aperiodic convergent inputs, cascade interconnections.	1	CO2 &CO3
2.4	Characterization of causality and stability of LTI systems.	1	CO2 &CO3
2.5	System representation through differential equations and difference equations	2	CO2 &CO3
2.6	State-space Representation of systems.	2	CO2 &CO3
2.7	Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.	1	CO4
3	Fourier, Laplace and z- Transforms		
3.1	The Laplace Transform for continuous time signals and systems,	1	CO2
3.2	System functions, poles and zeros of system functions and signals,	2	CO2
3.3	Laplace domain analysis, solution to differential equations and system behaviour	2	CO2
3.4	The z-Transform for discrete time signals and systems	2	CO3
3.5	System functions, poles and zeros of systems and sequences, z-domain analysis	2	CO3
3.6	Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients	2	CO4
3.7	Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response	1	CO4
3.8	The Discrete Time Fourier Transform (DTFT) and its properties		CO5
3.9	The Discrete Fourier Transform (DFT) and its properties, Fast Fourier Transform - radix 2	2	CO5
3.10	Parseval's Theorem	1	CO5
4	Sampling and Reconstruction		
4.1	The Sampling Theorem and its implications	1	CO6
4.2	Spectra of sampled signals	1	CO6
4.3	Reconstruction: ideal interpolator, zero-order hold, first-order hold	1	CO6
4.4	Aliasing and its effects.	1	CO6
4.5	Relation between continuous and discrete time systems	1	CO6
4.6	The applications of signal and system	1	CO6
	Total	40	

Course Designers:

Dr.L.Jessi Sahaya Shanthi
Dr.R.Helen

ljseee@tce.edu
rheee@tce.edu

Prof M. Varatharajan varatharajan@tce.edu

18EE360	C AND C++ PROGRAMMING	Category	L	Т	Р	Credit
		ES	2	0	2	3

Preamble

C is a general-purpose programming language which features economy of expression, modern control flow and data structures, and a rich set of operators. C++ language has powerful object-oriented and template features that can improve software design and simultaneously reducing code complexity and the risk of error.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the basic concepts, data types, operators and statements in C programming	20
CO2	Analyse the developed C program for solving the given problem using control statements/ functions/structures/files /pointers	30
CO3	Explain the basic concepts, operators and statements in C++ programming	5
CO4	Explain the class and objects in C++ programming	5
CO5	Apply the concept ofclass and objects for solving the given problem in C++ programming	10
CO6	Analyze the given C and C++ program	30

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dor	main Level		CDIO	Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale			,	(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.1	
CO2				Complex	1.1, 2.1.5, 2	2.4.4, 3.1.2,
	TPS4	Analyse	Organise	Overt	3.2.3, 3.2.5	
				Responses		
CO3	TPS2	Understand	Respond		1.1	
CO4	TPS2	Understand	Respond		1.1	
CO5	TPS4	Apply	Value	Mechanism	1.1, 2.1.4, 3.1.2	2

CO6	TPS4		Organise	Complex	1.1,	2.1.5,	2.4.4,	3.1.2,
		Analyse		Overt	3.2.3	, 3.2.5		
				Responses				

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						M		М			М	М
CO 2	s	s	М	М	М			M	s	S			S	S
CO 3	М	L						M		М			М	М
CO 4	М	L						M		М			М	М
CO 5	s	М	L	L				M	s	S			S	S
CO 6	s	s	М	М	М			M	s	S			S	s

S- Strong; M-Medium; L-Low

AssessmentPattern: Cognitive Domain

	Contin	uous Assess	ment Tests	Practical	
Cognitive Levels	1	2	3	Test	Terminal Examination ^s
Remember	10	10	10	-	10
Understand	30*	30*	30*	-	30*
Apply	40	40	40	30	40
Analyse	20	20	20	40	20
Evaluate					
Create					

^{*}In Bloom's understand category, 20 Marks is allotted for multiple choice questions

AssessmentPattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	20
Complex Overt Responses	10
Adaptation	

^{\$ -} Theory Examination.

Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Explain different types of operators in C with suitable example.
- 2. Explain different types of 'if' statements with suitable programs.
- 3. Explain different modes of operation on files?

Course Outcome 2 (CO2):

- 1. Write a C program to determine all possible roots of a quadratic equation with suitable algorithm and draw a necessary flowchart.
- 2. Write a C program to find the largest number among the given three numbers and draw a necessary flowchart.
- 3. Write a C program to sort given numbers in ascending orderusing file operation.

Course Outcome 3 (CO3):

- 1. Write the syntax for *cin* and *cout* commands.
- 2. Write the role of switch statement.
- 3. Differentiate nested if loop and switch statements.

Course Outcome 4 (CO4):

- 1. Write the syntax of class in C++.
- 2. List the operators which cannot be overloaded in C++.
- 3. What is meant by inheritance and explain different types of inheritance with simple diagram

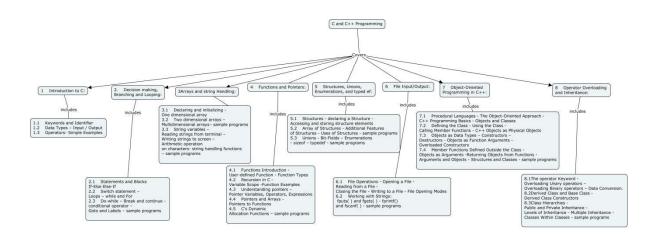
Course Outcome 5 (CO5):

- 1. Write a C++ program to add two complex numbers using operator overloading concept
- 2. Write a C++ program to explain the concept of class and objects.
- 3. Explain the use of object as function argument with a C++ program.

Course Outcome 6 (CO6):

1. What is the output of the below code snippet? #include<stdio.h>

```
main()
{
```


```
for(1;2;3)
printf("Hello");
}
                      B - Prints "Hello" once.
                                                   C - No output D - Compile error
A - Infinite loop
2. What is the output of the following program?
#include<stdio.h>
void f(int a[])
{
int i;
for(i=0; i<3; i++)
a[i]++;
}
main()
{
inti,a[] = \{10, 20, 30\};
f(a);
for(i=0; i<3; ++i)
 {
printf("%d ",a[i]);
 }
}
A - 10 20 30 B - 11 21 31 C - Compile error D - Runtime error
3. Which of the following statement shows the correct implementation of nested conditional
   operation by finding greatest number out of three numbers?
A - max = a > b? a > c?a:c:b > c?b:c B - a = b? c = 30;
C - a>b : c=30 : c=40;
                                     D - return (a>b)?(a:b) ?a:c:b
4. Which among following is not a valid visibility mode in c++ program?
A – Private
              B - Public
                           C – Protected D – Limited
5. How we can define member function outside the class?
                     B - Using structure C - Using pointers D - Using scope resolution
A - Using union
```

- 6. The major goal of inheritance in C++ is?
- A -To facilitate the reusability of code
- B To help modular programming
- C -To facilitate the conversion of data types D To extend the capabilities of a class

List of sample programs:

- 1. Draw the flowchart, write algorithm and C program to solve the given quadratic equations.
- 2. Draw the flowchart, write algorithm and C program to solve the given mesh/nodal equations.
- 3. Write a C program to find the product of two matrices. Create a function mul() to do the calculation.
- 4. Write a C program to obtain equivalent circuit parameters of a given transformer.
- 5. Write a C program to predetermine the efficiency of DC machine.
- 6. Write the algorithm and C program to find the transient response of RLC series circuit.
- 7. Draw the flowchart, write algorithm and C++ program to solve the given equations $f(x) = x^3 6x^2 72x 27 = 0$
- 8. Write a C++ program to add two complex numbers using operator overloading concept
- 9. Draw the flowchart, write algorithm and C++ program to simulate a clock model

Concept Map

Syllabus

Introduction to C:

Keywords and Identifier- Variables - Constants - Data Types - Input / Output - Operators-Simple Examples

Decision making, Branching and Looping:

Statements and Blocks If-Else Else-If - Switch statement – Loops – while and For – Do-while – Break and continue - conditional operator – Goto and Labels – sample programs

Arrays and string Handling:

Declaring and initializing - One dimensional array - Two dimensional arrays - Multidimensional arrays - sample programs. String variables - Reading strings from terminal - Writing strings to screen -Arithmetic operation on characters- string handling functions - sample programs

Functions:

Functions introduction - User-defined function - Function types -Recursion in C - Variable scope -Function examples

Pointers:

Understanding pointers – Pointer variables, Operators, Expressions - Pointers and Arrays - Pointers to Functions - C's Dynamic allocation functions – sample programs

Structures, Unions, Enumerations, and typedef:

Structures - declaring a structure - Accessing and storing structure elements - Array of Structures - Additional features of structures - Uses of structures - sample programs. Unions - Bit-Fields - Enumerations - sizeof - typedef - sample programs

File Input/Output:

File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File opening modes - Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs

Object-Oriented Programming in C++:

Procedural Languages - The Object-Oriented approach - C++ programming basics - Objects and Classes - Defining the Class - Using the Class - Calling member functions - C++ Objects as physical Objects - Objects as data Types - Constructors - Destructors - Objects as function arguments - Overloaded constructors - Member functions defined outside the Class - Objects as arguments - Returning objects from functions - Arguments and Objects - Structures and Classes - sample programs

Learning Resources

- 1. Herbert Schildt, "C: the Complete Reference", Osborne McGraw-Hill, 1995
- 2. Yashavant P. Kanetkar, "Let us C", 14th Edition, BPB Publications
- 3. Robert Lafore, "Object-Oriented Programming in C++", Pearson Education, 2002.
- 4. E.Balagurusamy, Programming in ANSI C, 3rd Edition, Tata McGraw Hill, Publication Company, 2006
- 5. Brain W.Kernigan and Dennis M.Ritchie, "The C Programming Language ANSI C", Prentice Hall of India, 1990.
- 6. E.Balagurusamy, Object Oriented Programming with C++, 5th Edition, Tata McGraw Hill Publication Company, 2011
- 7. www.programiz.com/c-programming
- 8. https://www.tutorialspoint.com/cprogramming
- 9. http://www.cprogramming.com/tutorial/c-tutorial.html
- 10. https://www.coursera.org/course/cprogramming
- 11. http://nptel.ac.in/courses/106104128/

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Lectures	Outcome
1	Introduction to C:		

1.1	Keywords and Identifier- Variables - Constants	1	CO1
1.2	Data Types – Input / Output	1	CO1
1.3	Operators- Simple Examples	1	CO1
2.	Decision making, Branching and Looping:		
2.1	Statements and Blocks If-Else Else-If	2	CO2
2.2	Switch statement – Loops – while and For	2	CO2
2.3	Do-while – Break and continue - conditional operator – Goto	2	CO6
	and Labels – sample programs	_	
3	Arrays and string Handling:		
3.1	Declaring and initializing - One dimensional array	2	CO2
3.2	Two dimensional arrays – Multidimensional arrays– sample	2	CO2
	programs		
3.3	String variables – Reading strings from terminal – Writing	2	CO6
	strings to screen –Arithmetic operation on characters- string		
	handling functions – sample programs		
4	Functions and Pointers:		
4.1	Functions Introduction - User-defined Function - Function	2	CO2
	Types	_	
4.2	Recursion in C - Variable Scope -Function Examples	1	CO2
4.3	Understanding pointers – Pointer Variables, Operators,	2	CO2
	Expressions		
4.4	Pointers and Arrays - Pointers to Functions	1	CO2
4.5	C's Dynamic Allocation Functions – sample programs	1	CO6
5	Structures, Unions, Enumerations, and typedef:		
5.1	Structures - declaring a Structure - Accessing and storing		CO2
• • •	structure elements	1	
5.2	Array of Structures - Additional Features of Structures -		CO2
	Uses of Structures - sample programs	2	
5.3	Unions - Bit-Fields - Enumerations - sizeof - typedef -	4	CO6
	sample programs	1	
6	File Input/output:		
U	i no mparoatpat.		
	<u> </u>		CO2
6.1	File Operations - Opening a File - Reading from a File -	2	CO2
6.1	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes	2	
	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and	2	CO2
6.1	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs		
6.1 6.2 7	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++:		CO2
6.1	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach -		
6.1 6.2 7 7.1	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes	1	CO2
6.1 6.2 7	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member	1	CO2
6.1 6.2 7 7.1 7.2	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects	1 1 1	CO2 CO3 CO4
6.1 6.2 7 7.1	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects Objects as Data Types - Constructors - Destructors -	1	CO2
6.1 6.2 7 7.1 7.2 7.3	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects Objects as Data Types - Constructors - Destructors - Objects as Function Arguments - Overloaded Constructors	1 1 1	CO2 CO3 CO4 CO3
6.1 6.2 7 7.1 7.2	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects Objects as Data Types - Constructors - Destructors - Objects as Function Arguments - Overloaded Constructors Member Functions Defined Outside the Class - Objects as	1 1 1 1	CO2 CO3 CO4
6.1 6.2 7 7.1 7.2 7.3	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects Objects as Data Types - Constructors - Destructors - Objects as Function Arguments - Overloaded Constructors Member Functions Defined Outside the Class - Objects as Arguments - Returning Objects from Functions - Arguments	1 1 1	CO2 CO3 CO4 CO3
6.1 6.2 7 7.1 7.2 7.3	File Operations - Opening a File - Reading from a File - Closing the File - Writing to a File - File Opening Modes Working with Strings: fputs() and fgets() - fprintf() and fscanf() - sample programs Object-Oriented Programming in C++: Procedural Languages - The Object-Oriented Approach - C++ Programming Basics - Objects and Classes Defining the Class - Using the Class - Calling Member Functions - C++ Objects as Physical Objects Objects as Data Types - Constructors - Destructors - Objects as Function Arguments - Overloaded Constructors Member Functions Defined Outside the Class - Objects as	1 1 1 1	CO2 CO3 CO4 CO3

	Total	36	
	sample programs		
	Inheritance - Multiple Inheritance - Classes Within Classes -	1	
8.3	Class Hierarchies - Public and Private Inheritance - Levels of		CO6
8.2	Derived Class and Base Class - Derived Class Constructors	1	CO4
	Overloading Binary operators – Data Conversion.	I	
8.1	The operator Keyword - Overloading Unary operators -	1	CO3

Course Designers:

1.	Dr. P. Venkatesh	pveee@tce.edu
2.	Dr. C.K. Babulal	ckbeee@tce.edu
3.	Dr. S. Charles Raja	charlesrajas@tce.edu

18EE370	DC MACHINES AND	TRANSFORMERS LAB

Category	L	Т	Р	Credit
PC	-	-	2	1

Preamble

This laboratory gives a practical exposure to the students to learn the characteristics of Transformers and DC Machines that are used nowadays in Electrical Systems. The students also learn to select the suitable DC Electrical Machines for an application based on its characteristics. To familiarize the standard testing procedures of DC Machines and Transformers.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

COs No.	Course outcomes	Weightage %
CO1.	Obtain the characteristics of DC Generator (Shunt, Series & Compound) independently	20
CO2.	Obtain the characteristics of DC Motor (Shunt & Series) independently	20
CO3.	Obtain the Voltage Regulation and Efficiency characteristics of Transformer independently	20
CO4.	Testing of Transformer for Efficiency Calculation & Modeling	20
CO5.	Testing of DC Machine to monitor efficiency and enhance it	10
CO6.	Obtain Thermal & Vibration characteristics of DC Machines and Transformers	10

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Don	nain Level	CDIO Curricular Components	
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			-	
CO1	TPS3	Apply	Value	Mechanism	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.5.1, 3.1.1, 3.1.2. 3.2.3
CO2	TPS3	Apply	Value	Mechanism	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.4.3, 2.5.1, 3.1.2, 3.1.1, 3.2.3
CO3	TPS3	Apply	Value	Mechanism	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.4.3,2.5.1, 3.1.2, 3.1.1, 3.2.3
CO4	TPS3	Apply	Value	Mechanism	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.4.3,2.5.1, 3.1.2, 3.1.1, 3.2.3

CO5	TPS3	Apply	Value	Mechanism	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.4.1, 2.5.1, 3.1.2 3.1.1, 3.2.3
CO6	TPS2	Understand	Respond	Guided Response	1.2.4, 2.2.3, 2.2.4,2.3.1, 2.5.1, 3.1.2, 3.1.1, 3.2.3

Mapping with Programme Outcomes

CO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L	L				М	S	L			S	
CO 2	S	М	L	L				М	S	L			S	
CO 3	S	М	L	L				М	S	L			S	
CO 4	S	М	L	L				М	S	L			S	
CO 5	S	М	L	L				М	S	L			S	
CO 6	М	L			S			М	S	L			М	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand	10	10
Apply	40	40
Analyse	20	20
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Practical Component/Observation
Perception	
Set	
Guided Response	10
Mechanism	20
Complex Overt Responses	
Adaptation	
Origination	

List of Experiments/Activities with CO Mapping

E.No	Name of the experiment	СО	No. of sessions
DC Ma	achine		
1.	Load characteristics of DC Generators	CO1	1
2.	Methods of Excitation and Voltage Control of DC	CO1	1
	Generators		
3.	Measuring the resistance of Armature and Field	CO1	1
	Windings		
4.	Methods of Starting and Speed Control of DC Motors	CO2	1
5.	Load Characteristics of DC Motors	CO2	1
	Continue and a literature and the state	005	4
6.	Swinburne's & Hopkinson's tests	CO5	1
7.	Thermal and Vibration Analysis of DC Machines	CO6	1
Trans	formers		
8.	Performance estimation using various load	CO3	1
9.	Performance calculation using equivalent circuit	CO4	1
10	Measurement of Winding Resistance and Inductance	CO4	1
11	Sumpner's test	CO4	1
12	Thermal and Vibration Analysis of Transformer	CO6	1

Learning Resources

- 1. D.P.Kothari & I.J.Nagrath, "Electrical Machines", Tata-McGrawhill, Newdelhi, 5th Edition, 2010.
- 2. R.K.Rajput, "Electrical Technology", Laxmi Publications, 3rd edition, 2005.
- 3. Vincent Deldoro, "Electromechanical Energy Conversion" PHI III edition,
- 4. M.G.Say, Theory and performance of electrical machines, Tata-Mcgraw hill

Course Designers

1. Dr.V.Saravanan vseee@tce.edu

2. Dr.R. Rajan Prakash r_rajanprakash@tce.edu

3. Dr. V. Mahesh vmeee@tce.edu

		Category	L	Т	Р	Credit
18EE380	INTEGRATED CIRCUITS LABORATORY	PC	-	-	2	1

Preamble

This laboratory gives a practical exposure to the students to learn the characteristics of analog and digital ICs that are used in most of the electronic circuits. Student can also conceive ideas on different electronics circuits have analog and digital ICs and can be able to design and implement it for particular applications.

Prerequisite

18EE250 - Electronics Circuits and devices

18EE270 - Electronics Circuits and devices Lab

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Obtain the characteristics of the given Op-amp by conducting suitable experiments.	10
CO2	Analyze the performance of the designed circuits like amplifier, filters using operational amplifier for the given applications.	30
CO3	Analyze the performance of the Multivibrator designed using 555 timers for the given specifications.	5
CO4	Analyze the performance of the voltage regulators designed using linear Regulator ICs.	5
CO5	Analyze the performance of the designed Combinational circuits for the given requirements using suitable digital ICs.	20
CO6	Analyze the performance of the designed sequential circuits for the given requirements using suitable digital ICs.	20
CO7	Evaluate the performance of the designed IC based system for the conceived problem	20

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

CO TCE Learning Domain Level CDIO Curricular Components

#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)
CO1	TPS3	Apply	Value	Mechanism	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO2	TPS4	Analyse	Organise	Complex Overt Responses	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO3	TPS4	Analyse	Organise	Complex Overt Responses	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO4	TPS4	Analyse	Organise	Complex Overt Responses	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO5	TPS4	Analyse	Organise	Complex Overt Responses	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO6	TPS4	Analyse	Organise	Complex Overt Responses	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.4.2, 3.1.1, 3.2.3
CO7	TPS5	Evaluate	Organise	Adaptation	1.2.5, 1.2.6, 2.1.2, 2.1.5, 2.2.3, 2.3.1, 2.3.2, 2.4.2, 2.4.4, 2.4.7, 3.1.1, 3.2.3, 4.3.1, 4.4.1, 4.5.1, 4.6.1

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	РО	РО	РО	PO	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L	L	S	М		М	М	М				S
CO 2	S	S	М	М	S	М		М	М	М				S
CO 3	S	S	М	М	S	М		М	М	М				S
CO 4	S	S	М	М	S	М		М	М	М				S
CO 5	S	S	М	М	S	М		М	М	М				S
CO 6	S	S	М	М	S	М		М	М	М				S
CO 7	S	S	S	S	S	М		М	М	М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand		
Apply	40	40
Analyze	30	30
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Practical Component/Observation
Perception	
Set	
Guided Response	
Mechanism	20
Complex Overt Responses	10
Adaptation	
Origination	

List of Experiments/Activities with CO Mapping

E.No	Name of the experiment	СО	No. of
			sessions
1.	Characteristics of given Operational Amplifier	CO1	1
2.	Design of Comparator, Amplifier, Integrator, differentiator	CO2	1
	and Precision rectifiers using OP-AMP (Hardware		
	/Simulation)		
3.	Design of Instrumentation Amplifier, Second order active	CO2	1
	filters using OP AMP/ FPAA (Hardware /Simulation)		
4.	Design of V to I , I to V converter, and Oscillator circuits	CO2	1
	using OP AMP/FPAA (Hardware /Simulation)		
5.	Design of Multivibrator circuits using 555 Timer ICs	CO3	1
	(Hardware /Simulation)		
6.	Design of Voltage Regulator	CO4	1
7.	Realization of Boolean expression using universal gates.	CO5	1
8.	Realization of Full adder, Subtractor, Multiplexer,	CO5	1
	Demultiplexer, Decoder using suitable Digital		
	ICs.(Hardware/ verilog simulation)		
9.	Realization of shift Registers and counters using suitable	CO6	1

	Digital ICs. (Hardware/ verilog simulation)		
10	Development of IC based electronic system for a real-	CO7	2
	world applications (selected by group of students)		

Learning Resources

- Roy Choudhury and shall B.Jain, Linear Integrated circuits, Wiley Eastern Ltd, 4th edition, 2010
- 2. Jacob Millman & Christos C.Halkias- Integrated electronics, McGraw Hill Education; 2 edition ,2017
- 3. M.Morris Mano and Michael D.Ciletti, Digital Design, Fourth Edition, Pearson Prentice Hall, 2008

Course Designers:

1. Dr. S. Arockia Edwin Xavier - saexeee@tce.edu

2. Dr.R.Helen -rheee@tce.edu

3. Dr.B.Ashok Kumar -ashokudt@tce.edu

18ES390 DESIGN THINKING	_	Category		1	1	Credit
	Ш	ES	1	-	2	2

Preamble

Design has been defined as a "systematic, intelligent process in which designers generate, evaluate, and specify concepts for devices, systems, or processes whose form and function

achieve clients' objectives or users' needs while satisfying a specified set of constraints". Human-centered design is defined as a process and a set of techniques used to create new solutions for the world. Solutions include products, services, environments, organizations, and modes of interaction. The reason this process is called "human-centered" is because it starts with the people we are designing for. This course facilitates the development of students' professional skills through their team engagement in developing conceptual design for a local community problem.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course students will be able to

00	Course Outcome Statement	Maightaga
CO	Course Outcome Statement	Weightage
Number		in %
CO1	Identify a specific social need to be addressed	20
CO2	Identify stakeholder's requirements for the societal project	20
CO3	Develop measurable criteria in which design concepts can be evaluated	10
CO4	Develop prototypes of multiple concepts using user's feedback	30
CO5	Select the best design solution among the potential solutions with its functional decomposition	20

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning [Domain Lev	el	CDIO Curricular Components
#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)
CO1	TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.1, 3.1.2, 3.2.3, 3.2.6, 4.1.2
CO2	TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.2, 2.5.1, 2.5.2, 3.1.2, 3.2.3, 3.2.6, 4.1.2
CO3	TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.3, 3.1.2, 3.2.3, 3.2.6, 4.1.2, 4.3.1
CO4	TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.4, 3.1.2, 3.2.3, 3.2.6, 4.1.2, 4.4.1
CO5	TPS5	Evaluate	Organise	Adaptation	1.1, 1.2, 2.1.5, 3.1.2, 3.2.3, 3.2.6, 4.1.2, 4.4.1

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	М	L	-	-	М	М	М	L	М	М	S
CO2	S	М	L	-	-	М	М	М	L	М	М	S
CO3	S	М	L	-	-	М	М	М	L	М	М	S
CO4	S	М	L	-	М	М	М	М	L	М	М	S
CO5	S	S	М	L	М	М	М	М	L	М	М	S

S- Strong; M-Medium; L-Low


Assessment Pattern: Cognitive Domain

Phases	Deliverables	Marks	Course Outcomes
Continuous Assessment			
Review 1 – Problem Identification	Technical Report	10	CO1 and CO2
Review 2 – Specification Development	Technical Report	20	CO3

Review 3 -Conceptual Design	Technical Report	20	CO4 and CO5
End-Semester Examination			
Demonstration	Prototype	60	CO1, CO2, CO3,
Poster Presentation	Poster	40	CO4 and CO5

- Reports are to be submitted at each review. The report and presentation will be evaluated based on Rubrics
- Demonstration and Poster presentation will be evaluated by two faculty members nominated by their respective Head of the Department.

Concept Map

Syllabus

- **1.0 Project Identification:** Needs Assessment, Stakeholder Identification, Stakeholder Requirement Project Time Constraint.
- **2.0 Specification Development:** Description Problem Environment, Creation of Stakeholder's Profiles Development of Low-cost Prototypes, Development of Task-Analysis, Comparison with Benchmark Products, Development of Customer Specification, Development of Evaluation Criteria,
- **3.0 Conceptual Design:** Conduct of Functional Decomposition, Brainstorming of possible solutions, Creation of Prototypes for Multiple Concepts, Refinement of Design Specification on users' feedback, Evaluation of Potential Solutions, Selection of best design

Learning Resources

- 1. Learning Material prepared by TCE faculty members
- 2. https://www.ideo.com/
- 3. https://engineering.purdue.edu/EPICS

Course Contents and Lecture Schedule

Module	Topic	No. of Hou	ırs	Course
No.		In-Class	Hands-on	Outcome
1.	Project Identification: Introduction to Human-	1	-	CO1
	Centered Design			
1.1	Needs Assessment	1	2	CO1
1.2	Identification of Stakeholders	1	2	CO2
1.3	Identification of Stakeholder Requirements		2	CO2
1.4	Project Time Constraint	1	2	CO2
2.	Specification Development			
2.1	Description Problem Environment	1	2	CO3
2.2	Creation of Stakeholder's Profiles		2	CO3
2.3	Development of Low-cost Prototypes	1	2	CO3
2.4	Development of Task-Analysis	1	2	CO3
2.5	Comparison with Benchmark Products	1	2	CO3
2.6	Development of Customer Specification		2	CO3
2.7	Development of Evaluation Criteria	1	2	CO3
3.	Conceptual Design			
3.1	Conduct of Functional Decomposition	1	2	CO4
3.2	Brainstroming of possible solutions	1	2	CO5
3.3	Creation of Prototypes for Multiple Concepts	1	2	CO5
3.4	Refinement of design Specification on users'		2	CO6
	feedback			
3.5	Evaluation of Potential Solutions	1	2	CO6
3.6	Selection of best design		2	CO6
	Total	12	34	
		l	1	I

Course Designers:

1. Dr.S.J.Thiruvengadam sjtece@tce.edu

2. Dr.S.Saravana Perumaal sspmech@tce.edu

18EE410	PROBABILITY AND RANDOM PROCESSES	Categ
		BS

Category	L	Т	Р	Credit
BS	3	0	0	3

Preamble

An electrical engineering student needs to have some basic statistical tools and techniques to apply in diverse applications in digital signal processing (voice, image, video, etc.), communications systems and networks, radar systems, power systems. that requires an understanding of Probability distributions, and Testing of Hypotheses and random process. Also the Mathematical tool Curve Fitting is very much essential to find the statistical averages that occur in the above areas. The course is designed to impart the knowledge and understanding of the above concepts to Electrical Engineers and apply them in their areas of specialization.

Prerequisite

Course Code: 18 MA110 Course Name: Engineering Calculus

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage in %
CO1	Calculate expectation, variance and Standard deviation, Moments for discrete and continuous (univariate) random variables	15%
CO2	Use standard distributions to find the expected life time of electrical components	20%
CO3	Apply the concept of testing the hypotheses for large samples by using various tests for difference of proportions, means and variances, Apply the concept of testing the hypotheses for small samples by using various tests like t-test F test and Chi Square test.	25%
CO4	Explain about pseudo random number generation for a given probability distribution.	10%
CO5	Use Least square method to fit a Straight line, Parabola and exponential curves.	10%
CO6	Estimate the auto correlation function, power spectral density of random processes.	20%

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning D	omain Lev	rel	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				
CO1	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO2	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO3	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,4.3.3,4.4.1
CO4	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,2.2.1,2.2.4,4.3.3,4.4.1
CO5	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.5,2.2.1,2.2.4,4.3.3,4.4.1
CO6	TPS3	Apply	Value		1.1.1,2.1.1,2.1.2,2.1.4,2.1.5,4.3.3,4.4.1

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO2	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO3	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO4	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO5	S	М	L	L	-	-	-	М	М	М	-	М	S	S
CO6	S	М	L	L	-	-	-	М	М	М	-	М	S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels		ntinuous sessmen		Assign	nment	Terminal Examination	
	2	3	1	2	3		
Remember	10	10	10				-
Understand	20	20	20				30
Apply	70	70	70	100	100	100	70
Analyse							
Evaluate							
Create							

Sample Questions for Course Outcome Assessment

Course Outcome (CO 1):

1. An automobile service facility specializing in engine tune-ups knows that 45% of all tune-ups are done on four cylinder automobiles, 40% on six-cylinder automobiles, and 15% on eight-cylinder automobiles. Let X be the number of cylinders on the next car to be tuned. a)What is the pmf of X? b)What is the probability that the next car tuned has at least six cylinders? More than six cylinders?

- 2. The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer can be regarded as a continuous rv X with pdf. Compute k and the expected value of X.
- 3. In a test on 2000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2040 hours and S.D of 60 hours. Estimate the number of bulbs likely to bourn for more than 2150 hours, less than 1950 hours, more 1920 hours but less than 2100 hours.

Course Outcome (CO 2):

- 1. The life (in hours) of a magnetic resonance imaging machine (MRI) is modeled by a Weibull distribution with parameters $\alpha = 4.5$ and $\beta = 500$ hours. Determine the following: (a) Mean life of the MRI (b) Variance of the life of the MRI(c) Probability that the MRI fails before 250 hours.
- 2. A sample of eleven electric bulbs is drawn every day from those manufactured at a plant. The eleven bulbs are tested before shipment to the customer. An analysis of the test data collected over a number of years reveals that the probability of finding no defective bulb in a sample of eleven bulbs is 0.6. Probabilities of defective bulbs are random and independent of previous results. a) What is the probability of finding exactly three defective bulbs in a sample? b) What is the probability of finding three or more defective bulbs in a sample?
- 3. Of the Type A electrical resistors produced by a factory, 85.0% have resistance greater than 41 ohms, and 3.7% of them have resistance greater than 45 ohms. The resistances follow a normal distribution. What percentage of these resistors have resistance greater than 44 ohms?

Course Outcome (CO 3):

- 1. A manufacture of light bulbs claims that on the average 2% of the bulbs manufactured by him are defective. A random sample of 400 bulbs contained 13 defectives.on the basis of this sample can you support the manufacturer's claim at 5% LOS.
- 2. A study shows that 16 out of 200 submersible pumps produced on one assembly line required extensive adjustments before they could be shipped, while the same was true for 14 of 400 pumps produced on another assembly line. At 0.01 LOS, does this support the claim that the second production line does superior work?
- 3. The output of a power supply is assumed to be normally distributed. Sixteen observations taken on voltages are as follows: 10.35, 9.3, 10.0, 9.96, 11.65, 12.00, 11.25, 9.58, 11.54, 9.95, 10.28, 8.37, 10.44, 9.25, 9.38, and 10.85. Test the hypothesis that mean voltage is equal to 12 V against a two sided alternative using 5% l.o.s.
- 4. A manufacturer of fluorescent lamps claims that his lamps have an average luminous flux of 3,600 lm at rated voltage and frequency and that 90% of all lamps produced by an automatic process have a luminous flux higher than 3,300 lm. The luminous flux of the lamps follows a normal distribution. What standard deviation is implied by the manufacturer's claim? Assume that this standard deviation does not change. A random sample of I0 lamps is tested and gives a sample mean of 3,470 lm. At the 5% level of significance can we conclude that the mean luminous flux is significantly less than what the manufacturer claims? State your null hypothesis and alternative hypothesis

Course Outcome (CO 4):

- 1. Buses arrive at the bus stop at a bus stand according to a Poisson process with a mean of one bus per 15 minutes. Generate a random variate, N, which represents the number of arriving buses during a 1-hour time slot. Now, N is Poisson distributed with a mean of four buses per hour. Using random number table generate a poisson variate.
- 2. Downtimes for a high-production candy-making machine have been found to be gamma distributed with mean 2.2 minutes and variance 2.10 minutes² Generate a gamma variate using the random numbers R1 = 0.832, R2 = 0.021; R3 = 0.434, R4 = 0.716;
- 3. Using the multiplicative congruential method, find the period of the generator for a = 13, m = 26 = 64 and X0 = 1,2,3,4.

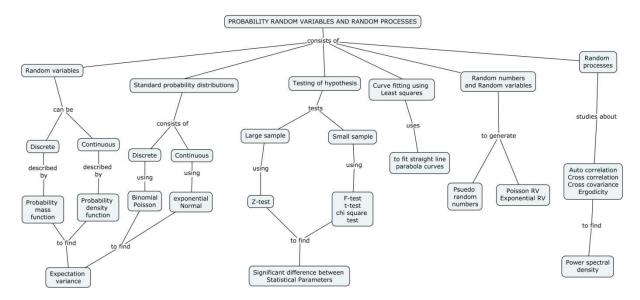
Course Outcome (CO5)

1. Fit a straight line to the following data. Also estimate the value of y at X=70

Χ;	71	68	73	69	67	65	66	67
Y:	69	72	70	70	68	67	68	64

2. Fit a parabola , by the method of least squares , to the following data, also estimate y at x = 6

X: 1 2 3 4 5 Y: 5 12 26 60 97


3. From the table given below, find the best values of a and b in the law $y = a e^{bx}$ by the method of least squares.

X: 0 5 8 12 20 Y: 3.0 1.5 1.0 0.55 0.18

Course Outcome (CO6):

- 1. A random process is defined by $X(t) = K \cos \omega t$; t > 0 where ω is a constant and K is uniformly distributed between 0 and 2. Determine the following i) E{X(t)} ii) The auto correlation function of X(t)} iii) The auto covariance function of X(t)}
- 2. A random process has the sample functions of the form $X(t) = A Cos(\omega t + \theta)$ where ω is a constant and A is a random variable and has a magnitude of +1 and -1with equal probability , and θ is a random variable that is uniformly distributed between 0 and 2π . Assume that the random variables A and θ are independent , i) Is X(t) a wide sense stationary process
- 3. A random process Y(t) has a power spectral density $S_{YY}(\omega) = \frac{9}{\omega^2 + 64}$, find
 - i) the average power in the process and ii) the auto correlation function.

Concept Map

Syllabus

Random variables and Probability distributions

(5 hours)

Random variables – Probability distributions for discrete and continuous random variables – Probability mass function, Probability density functions – Cumulative distribution functions and expected values

Standard Probability Distributions

(7 hours)

The Binomial probability distribution –The Poisson Distribution - The exponential, and Normal Distributions

Testing of Hypothesis

(11 hours)

Hypotheses and Test Procedures – Tests concerning a population mean – Tests concerning a Population proportion – Tests concerning population variance –inferences concerning difference between two population Means – inferences concerning difference between Population proportions - Inferences concerning two population variances

Random Numbers and Variables

(3 hours)

Definition – Properties of Random numbers – Random Number Generation by Linear Congruential Method and Mixed Congruential Method – Random variable generator for Poisson and exponential probability distributions.

Curve Fitting using Least Squares

(3 hours)

Using least square method to fit a Straight Line, Parabola and exponential curves

Random Processes (7 Hours)

Introduction - Classification of random process - characterizing a random process - cross correlation and cross covariance of a functions - stationary random processes - - power spectral density.

Learning Resources

- 1. Jay L. Devore ,Probability and Statistics for Engineering and the Sciences (English) 8th Edition, Cengage Learning India Pvt Ltd, New Delhi, 2012. (For Modules 1,2,3).
- 2. Oliver C. Ibe, Fundamentals of Applied Probability and Random Processes, Elsevier, 2015.(For Modules4&5 4.1, 4.2, 4.3.)

3. Jerry Banks, John S.Curson Bary I Nelson, Discrete Event System Simulation - PHI, 2009. (Module 4.4, 4.5)

Course Contents and Lecture Schedule

Module	Topic	No. Of	Course
No.	Торіо	Hours	Outcome
1.	Random variables and Probability distributions	riouro	Outcome
1.1	Random variables	1	CO 1
1.2	Probability distributions for Discrete and Continuous	1	CO 1
	random variables		
1.3	Probability density functions – Cumulative	1	CO 1
	Distribution functions		
1.4	Expected values	2	CO 1
2	Standard Probability Distributions		
2.1	The Binomial distribution, Poisson distribution	3	CO 2
2.2	The exponential Distribution.	2	CO 2
2.3	The Normal Distribution.	2	CO 2
3	Testing of Hypothesis		
3.1	Hypotheses and Test Procedures	3	CO3
3.2	Test on Large Samples	4	CO 3
3.3	Test on small Samples	4	CO 3
4	Random Numbers and Variables		
4.1	Introduction, random number generation using linear	2	CO 4
4.1	congruential methods, mixed congruential method		
4.2	Random variate generation for Poisson, exponential	1	CO4
4.2	distribution		
5	Curve Fitting using Least Squares		
5.1	Straight Line fit	1	CO 5
5.2	Parabolic fit	1	CO 5
5.3	Fitting of exponential curves	1	CO 5
6	Random Processes		
6.1	Introduction , Classification of random process,	2	CO6
0.1	characterizing a random process		
6.2	Cross correlation and cross covariance of a functions	1	CO6
6.3	Stationary random processes	2	CO6
6.4	Power spectral density	2	CO6
	TOTAL No. of Hours	36	

Course Designers

- 1. Dr.V.Gnanaraj vgmat@tce.edu
- 2. Dr.R.Rammohan rr_maths@tce.edu
- 3. Dr.B.Vellaikannan-bvkmat@tce.edu

18EE420	AC MACHINES	Category	L	Т	Р	Credit
		PC	3	0	0	3

Preamble

Rotating electrical machines are widely used for the purpose of converting energy from one form to another. AC machines are becoming more and more attractive in many applications such as those requiring variable speed and flexible control. Alternating Current (AC) machines are the most preferred for generation of electric power. AC motors are the commonly used in industry for motive power for applications. Electrical drive is superior to other forms of prime movers in terms of efficiency, control and pollution. There are three families of rotating machines one of which is the synchronous machine commonly in the form of the AC synchronous generator such machines are widely used in power stations for electric power generation. The synchronous motor has limited application. However an asynchronous machine, the induction motor has wide spread industrial and domestic application such that about 85 % of electric power consumption is due to induction motor loads. Single phase motor has wide spread small power application for example in the home. Due to their low cost and economical advantages, AC motors are widely used in applications requiring a wide range of speeds or precise control of output.

Prerequisite

18EE240 Electromagnetic Fields 18EE230 Electric Circuits Analysis

Course Outcomes

On the successful completion of the course, students will be able to:

COs No.	Course Outcomes	Weightage %
CO1.	Explain the Fundamentals and laws governing motoring and Generating Action of AC Machines	10
CO2	Explain the construction of AC Machines and role of its parts	10
CO3	Obtain the performance of AC Generators	25
CO4	Obtain the performance of AC Motors using equivalent circuit	25
CO5	Explain the Operation and Control of AC Machines	15
CO6	Apply the testing procedures for AC Machines as per the standard practice	15

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	ain Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)

	Scale			
CO1	TPS2	Understand	Respond	1.2.8,
CO2	TPS2	Understand	Respond	1.2.8, 2.3.1,
CO3	TPS3	Apply	Value	1.2.8, 2.1.1,
CO4	TPS3	Apply	Value	1.2.8, 2.1.1, 2.1.2,
CO5	TPS2	Understand	Respond	1.2.8, 2.1.1,
CO6	TPS3	Apply	Value	1.2.8, 2.1.1,2.2.4

Mapping with Programme Outcomes

COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
	∣ 1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	М	L						M		M			М	
CO2	М	L						M		M			М	
CO3	S	М	L	L				M		M			S	
CO4	S	М	L	L				M		M			S	
CO5	М	L						M		M			М	
CO6	S	М	L	L				M		M			S	

S- Strong; M-Medium; L-Low

Assessment Pattern

	Cont	inuous		Assia	nment			
Cognitive	Asse	ssment T	ests				Terminal	
Levels	1	2 3		1	2	3	Examinati	
							on	
Remember	20	20	10	-	-	-	10	
Understand	40	40	30	-	-	-	30	
Apply	40	40	60	100	100	100	60	
Analyze								
Evaluate								
Create								

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Distinguish between rotating armature and rotating field types.
- 2. State Flemings Right and Left hand rule.

Course Outcome 2 (CO2):

- 1. Specify the role of damper winding in Alternator?
- 2. What does skewing means in squirrel cage Induction motor?
- 3. Specify the purpose of connecting a capacitor in the auxiliary winding of a single-phase induction motor?

Course Outcome 3 (CO3).

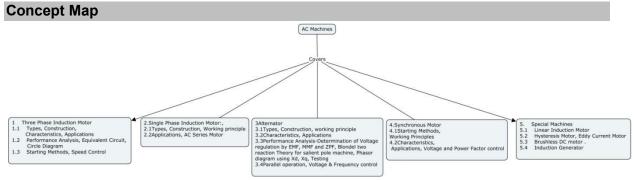
- 1. Define the term voltage regulation in Alternator?
- 2. Specify the need of parallel operation of alternators.
- 3. Explain the method of finding voltage regulation using synchronous impedance method for alternator?
- 4. Find the synchronous impedance and reactance of an alternator in which a given field current produces an armature current of 200 amperes on short circuit and a generated EMF of 50 volts on open circuit. The armature resistance is 0.1 Ohms. Calculate the induced voltage of armature, if it is deliver a load of 100 amperes at a power factor of 0.8 lagging with terminal voltage of 200 Volts?

Course Outcome 4 (CO4)

- 1. Draw the v curve of Synchronous motor and specify its axis parameters?
- 2. Discuss the effect of rotor resistance and reactance with the help of speed torque curve of induction motor?
- 3. Find the percentage of tapping required on an auto-transformer required for a squirrel cage induction motor to start the motor against 1/3rd of full load torque? The short circuit current on nominal voltage is 7 times of the full load current and the full load slip is 2%.
- **4.** A Three phase induction motor has a 4 pole Delta connected stator winding and runs on a 415 Volts, 50Hz supply. The rotor resistance per phase is 0.18 ohms and reactance 1.2 ohms. The ratio of stator to rotor turns is 1.8. The full load slip is 3%. Calculate the load torque in kg-m and speed at maximum torque?

Course Outcome 5 (CO5)

- 1. Two alternators A and B are operating in Parallel and supply a load of 10MW at 0.8p.f. lagging. Suggest with justification, the possible way to carry out the following and hence determine the reactive and active power share by each alternator.
- i) Is the real power shared by alternator A is increased to 6 MW.
- ii) If the p.f. of alternator B is increased to 0.94.
 - 2. With neat sketch explain the various speed control techniques applied for three phase induction motor.
 - 3. Design a five step rotor resistance starter for a three phase induction motor. The slip at the maximum starting current is 2% with slip ring short circuited and the resistance per rotor phase 0.02 Ohm.


Course Outcome 6 (CO6)

1. A three phase, 6600V, 50 Hz, star – connected alternator gave the following test results.

Voc	3100	4900	6600	7500	8300
If	16	25	37.5	50	70

A field current of 22A is required to circulate full load current on short circuit test. Calculate the full load voltage regulation for, 0.8 p.f. lagging using EMF and MMF method. Give your interpretation for difference in the regulation calculated.

2. With neat sketch explain the slip test on a salient pole alternator.

Syllabus

ASYNCHRONOUS MACHINE

Three Phase Induction Motor: Types, Construction, Working Principle, Characteristics, Applications, Performance Analysis, Equivalent Circuit, Circle Diagram, Starting Methods and Speed Control.

Single Phase Induction Motor: Types, Construction, Working principle, Applications, AC Series Motor.

SYNCHRONOUS MACHINE

Alternator: Types, Construction, working principle, Characteristics, Applications, Performance Analysis, Testing, Parallel operation, Voltage & Frequency control

Synchronous Motor: Starting Methods, Working Principles, Characteristics, Applications, Voltage and Power Factor control.

Special Machines: Linear Induction Motor, Hysteresis Motor, Eddy Current Motor, Brushless DC motor, Induction Generator.

Learning Resources

- 1. H.Wayne Beaty & Jame. L.Kirtley.Jr "Electric Motor Handbook", McGraw-Hill, USA, 1st Edition, 1998.
- 2. A.K.Sawhney and A.Chakrabarti, "A course in Electrical Machine Design",6th Edition, Dhanpat Rai & Co (P) Ltd., 2006.
- 3. Gupta.J.B,"Theory of Performances of Electrical Machines' Katson, 7th Edition, 1987
- 4. Vincent Deldoro, "Electromechanical Energy Conversion" PHI III edition,
- 5. M.G.Say, The Performance and Design of Alternating Current machines, Tata-McGraw Hill.

Course Contents and Lecture Schedule

Module		No. of	Course
	Topic	Lecture	Outcome
No.		Hours	

Module No.	Topic	No. of Lecture Hours	Course Outcome
	ASYNCHRONOUS MACHINE		
1	Three Phase Induction Motor		
1.1	Types, working Principle	2	CO1
1.2	Construction, Characteristics, Applications	2	CO2
1.3	Performance Analysis, Equivalent Circuit	3	CO4
1.4	Starting Methods, Speed Control	2	CO5
	Linear Induction Motor, Testing, Standards,	2	CO6
	Specifications		
2.	Single Phase Induction Motor:,		
2.1	Types, Construction, Working principle	2	CO1
2.2	Applications, AC Series Motor	2	CO3
	SYNCHRONOUS MACHINE		
3	Alternator		
3.1	Types, , working principle	2	CO1
3.2	Construction, Characteristics, Applications	2	CO2
3.3	Performance Analysis-Determination of Voltage	5	CO3
	regulation by EMF, MMF and ZPF, Blondel two reaction		
	Theory for salient pole machine, Phasor diagram using		
	Xd, Xq, Testing		
3.4	Parallel operation, Voltage & Frequency control	3	CO5
4.	Synchronous Motor		
4.1	Starting Methods, Working Principles	2	CO1
4.2	Characteristics, Applications, Voltage and Power Factor control	4	CO4
5.0	Special Machines:		
5.1	Linear Induction Motor , Hysteresis Motor	1	CO3
5.2	Eddy Current Motor, Stepper Motor	1	CO3
5.3	Brushless DC motor, Induction Generator	<u>'</u> 1	CO3
0.0	Total	36	000

Course Designers

1.Dr. S. Lathasleee@tce.edu2.Dr.V. Prakashvpeee@tce.edu

3. Dr.R.Rajan Prakash r_rajanprakash@tce.edu

18EE430	MEASUREMENTS AND	Category	L	T	P	Credit
	INSTRUMENTATION	PC	3	0	0	3

Preamble

The rapid development of new and exciting means of measurement using new technologies, the adoption of new standards give us a path way to the state of "Classic Electrical Measurements". However knowledge of these subjects is important to understand the principles of modern measuring instruments. Instrumentation systems helps to create, construct and maintain measuring devices and systems found in manufacturing plants and research institutions. Its main objective is to ensure that systems and processes operate safely and efficiently. This course is designed to impart fundamental knowledge of analog and digital measuring instruments characteristics. This course exposes the knowledge about the construction, principle and applications of analog and digital measuring instruments. Students will get the fundamental knowledge of DC and AC null measurement methods along with its behaviours on it's various applications. Also this course will provide an adequate exposure to various sensors, and usage of suitable sensing elements for the vital parameters like pressure, temperature, Flow, Current & Voltage.

Prerequisite

- 18EE250 Electronic Devices and Circuits
- 18EE230: Electric Circuit Analysis
- 18EE240: Electromagnetic Fields
- 18EE340: Digital Systems

Course Outcomes

On the successful completion of the course students will be able to

CO	Course Outcome Statement	Weightage***
Number		in %
CO1	Explain the static & dynamic characteristics, calibration, errors and standards of measuring instruments.	8
CO2	Explain the construction, working principle and applications of various Analog measuring Instruments	15
CO3	Explain the construction, working principle and applications of instrument transformers.	7
CO4	Explain the principle of operation and applications of various Digital instruments.	15

CO5	Explain the concepts of Smart Meters, Automatic Meter Reading(AMR) and PMU	5
CO6	Apply suitable AC and DC bridge for measuring R, L,C and frequency for the given specifications	20
CO7	Explain the working of smart sensors, MEMS and Nano sensors.	10
CO8	Apply suitable transducers for the measurement of pressure, temperature, speed, flow, current & voltage for the required precision	20

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Doma	in Level		CDIO Curricular Components
#	Proficien	Cognitive	Affective	Psyc	(X.Y.Z)
	cy Scale			hom	
				otor	
CO1	TPS2	Understand	Respond	-	1.2.9, 2.3.1,2.3.2,
CO2	TPS2	Understand	Respond	-	1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2
CO3	TPS2	Understand	Respond	-	1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2
CO4	TPS2	Understand	Respond	-	1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2
CO5	TPS2	Understand	Respond	-	1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2
CO6	TPS3	Apply	Value	-	1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2,2.2.
					3
CO7	TPS2	Understand	Respond		1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2
CO8	TPS3	Apply	Value		1.2.9,2.1.1,2.1.5,2.3.1,2.3.2,2.4.2,2.2.
					3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	РО	РО	PO	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М					М	М	М		М			М	М
CO 2	М	L						М		М	L		М	М
CO 3	М	L				М	S	М		М			М	М
CO 4	М	L						М		М			М	М
CO 5	М	L			М		s	М		М			М	М
CO 6	s	М	L	L				М		М	L		S	S
CO 7	М	L						М		М			М	М

CO	6 M	L	L				М		М	L		S	S	
----	-----	---	---	--	--	--	---	--	---	---	--	---	---	--

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive		ontinuc sessm	ous ent Tests	Assignmen		Terminal	
Levels	1	2	3	1	2	3	Examinati on
Remember	20	10	10	-	-	-	10
Understand	80	50	50	-	-	-	50
Apply	-	40	40	100	100	100	40
Analyse							
Evaluate							
Create							

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

- 1. State the meaning for 'International Standard' in measurements.
- 2. Name the few static performance characteristics of a measuring instrument.
- 3. Explain the significance of the dynamic characteristics.

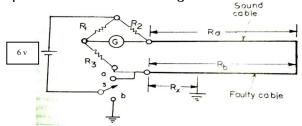
Course Outcome 2(CO2):

- 1. Describe the various forces/torques required in the measuring instruments.
- 2. Derive the expression for equation of motion for permanent magnet moving coil instrument.
- 3. Demonstrate the construction features of a repulsion type MI instruments.

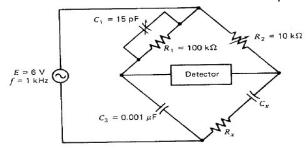
Course Outcome 3(CO3):

- 1. What is a potential transformer?
- 2. What is a current transformer?
- 3. Explain how power measurement is done using CT and PT.

Course Outcome 4 (CO4):


- 1. Explain the working principle of digital voltmeter.
- 2. Explain the operation of digital energy meter.
- 3. Summarize the advantages of Digital Instruments.

Course Outcome 5 (CO5):

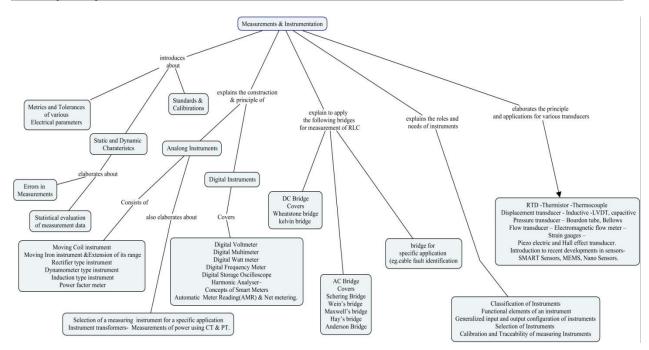

- 1. Demonstrate the significance of smart meters.
- 2. Explain the concept of smart Grid.
- 3. Summarize about the Automatic Meter Reading (AMR).
- 4. Explain the concept of PMU.

Course Outcome 6(CO6):

1. A Wheatstone bridge is connected for identify the cable fault as shown in Figure 3. When the switch is in position a, the bridge is balanced with R1=1000 Ω , R2=100 Ω , R3=53 Ω . When switch S is in position b, the bridge is balanced with R1=1000 Ω , R2=100 Ω , R3=52.9 Ω . if the resistance of the shorted wire is 0.015 Ω /m. What is the distance between the place of fault and the bridge?

2. The Schering bridge shown in Figure 2 is operated at balance. Find the equivalent series resistance and capacitance of Rx and Cx. Also find the Q factor of the capacitor Cx.

Course Outcome 7(CO7):


- 1. Explain the traceability hierarchy with respect to the traceability of measurement
- 2. Define SMART SENSOR.
- 3. Explain a smart sensor with block diagram.
- **4.** What is mean by MEMS?

Course Outcome 8 (CO8):

- 1. A pressure gage is to be used in an LVDT diaphragm combination. The LVDT has sensitivity of 1V/mm, and the diaphragm is to be constructed of steel (E=200GPa, v=0.3 and density 7800kg/m3) with a diameter of 20cm. Calculate the diaphragm thickness in accordance with the restriction that the maximum deflection does not exceed one fourth of this thickness. The maximum pressure is 2MPa. If a milli voltmeter capable of measuring a minimum of 1mV and that can be measure in steps of 1mV, is used for measurement, What is the lowest pressure in kPa which may be sensed by this instrument, resolution and the natural frequency of the diaphragm?
- 2. An experiment is conducted to calibrate a copper –constant thermocouple. With cold junction at 0°C, emf obtained at boiling point of water (100°C) and boiling point of sulphur (445°C) are 5 mV and 25 mV, respectively. If the relation is assumed to be $e_{t1-t2=a(t_1-t_2)+b\ (t_1^2-t_2^2)}$. Determine constants a and b.

A resistance thermometer is to be constructed of nickel wire. Thermometer resistance at 20°C is 100 Ω . What length of 0.4mm-diameter wire should be used. What would be the length if 2mm diameter wire is used? (Resistivity =0.8 Ω m). If resistance varies linearly with temperature then what would be the resistance at t = -50°C and 100°C? (Sensitivity = 0.2 Ω /°C).

Concept Map

Syllabus

Introduction to measurement

Metrics and Tolerances of various Electrical parameter (V,I, f, Power)- – Static and dynamic characteristics – Errors in measurement – Statistical evaluation of measurement data – Standards and calibration.-

Analog and Digital Instruments

Analog Instruments: Introduction to analog measuring instruments-Construction, principle and applications of - Moving Coil instrument- Moving Iron instrument - Extension of range. Rectifier type instrument - Dynamometer type instrument - Induction type instrument, Power factor meter, Selection of a measuring instrument for a specific application, - Instrument transformers- Measurements of power using CT & PT.

Digital Instruments: (Working Principle and it's applications) – True- RMS Meter-Average type Instruments-Digital Voltmeter -Digital Multimeter - Digital Watt meter - Digital Frequency

Meter - Digital Storage Oscilloscope - Harmonic Analyser - Concepts of Smart Meters - Automatic Meter Reading(AMR) - Net metering - Introduction to PMU.

DC and **AC** null measurements and it's applications -Wheatstone bridge, kelvin bridge - Schering Bridge, Wein's bridge -Maxwell's bridge, Hay's bridge, Anderson Bridge-Blumliens Bridge-Selection of a suitable bridge for specific application (eg. cable fault identification).

Role & Needs of instrumentation – Classification of Instruments – Functional elements of an instrument-Generalized input and output configuration of instruments – Selection of Instruments – Calibration and Traceability of measuring Instruments.

Transducers: Temperature transducers- RTD, thermistor, Thermocouple - **Displacement transducer** - Inductive, capacitive, LVDT, **Pressure transducer** - Bourdon tube, Bellows-**Speed transducers**- Encoders - **Flow transducer** - Electromagnetic flow meter - Strain gauges - Piezo electric and Hall effect transducer. Introduction to recent developments in sensors- SMART Sensors, MEMS, Nano Sensors.

Learning Resources

- 1. A.K. Sawhney, A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & Co, 2012.
- 2. E.O. Doebelin, Measurement Systems Application and Design, Tata McGraw Hill publishing company, 2003.
- 3. Robert.B.Northrop, Introduction to instrumentation and measurements, Allied Publishers. 2002.
- 4. Patranabis, D, Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010.
- 5. B. E. Jones, Instrumentation measurement and Feedback, Tata McGraw-Hill, 2000.
- 6. Kalsi H.S, Electronic Instrumentation, Tata McGraw-Hill 2003
- 7. Alan S. Morris, Principles of Measurement and Instrumentation, Prentice-Hall of India Pvt. Ltd., New Delhi, 2003
- 8. http://www.nist.gov/pml/mercury_traceability.cfm (Module 1.5)
- 9. http://www.european-accreditation.org/publication/ea-4-07-m (Module 1.5)
- 10. Lecture series: https://nptel.ac.in/syllabus/108106070/

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Hours	Outcome
1.	Introduction to measurement		
1.1	Metrics and Tolerances of various Electrical parameters (V,I, f, Power)	1	CO1
1.2	Static and dynamic characteristics	1	CO1
1.3	Errors in measurement	1	CO1
1.4	Statistical evaluation of measurement data	1	CO1
1.5	Standards and calibration	1	CO1
2.	Analog and Digital Instruments		
2.1	Analog Instruments: Introduction to analog measuring instruments	1	CO2
2.2	Construction, principle and applications of - Moving	1	CO2

С	oil instrument		
	onstruction, principle and applications of - Moving on instrument, Extension of range	2	CO2
	ectifier type instrument	1	CO2
	ynamometer type instrument	1	CO2
	nduction type instrument	1	CO2
2.7 P	ower factor meter, Selection of a measuring astrument for a specific application	1	CO2
2.8 In	nstrument transformers- Measurements of power sing CT & PT.	2	CO3
D	igital Instruments		
2.9 T	rue- RMS Meter-Average type Instruments	1	CO4
2.10 D	igital Voltmeter -Digital Multimeter	1	CO4
2.11 D	igital Watt meter - Digital Frequency Meter	1	CO4
	igital Storage Oscilloscope, Harmonic Analyser	2	CO4
2.13 C	concepts of Smart Meters – Automatic Meter leading(AMR) – Net metering – Introduction to PMU	2	CO5
3. D	C and AC null measurements and it's pplications		
	/heatstone bridge	1	CO6
3.2 ke	elvin bridge	1	CO6
3.3 S	chering Bridge	1	CO6
3.4 V	/ein's bridge	1	CO6
3.5 M	laxwell's bridge, Blumliens Bridge	1	CO6
	ay's bridge, Anderson Bridge	1	CO6
3.7 S	election of a suitable bridge for specific application	1	CO6
4. R	ole & Needs of instrumentation		
4.1 C	lassification of Instruments	1	CO7
	unctional elements of an instrument	1	CO7
	Generalized input and output configuration of astruments	1	CO7
	election of Instruments – Calibration and Traceability f measuring Instruments.	1	CO7
	ransducers		
	emperature transducers - RTD, thermistor, hermocouple	1	CO8
5.2 D	isplacement transducer – Inductive, capacitive, VDT	1	CO8
	ressure transducer – Bourdon tube, Bellows	1	CO8
	peed transducer - Encoder	1	CO8
5.5 F	low transducer – Electromagnetic flow meter – train gauges	1	CO8
	iezo electric and Hall effect transducer.	1	CO8
5.7 In	ntroduction to recent developments in sensors- MART Sensors, MEMS, Nano Sensors.	1	CO8
	THE TOTAL CONTROL OF THE CONTROL OF	40	

Course Designers:

Dr.M.Geethanjali mgeee@tce.edu
 Dr.Prakash vpeee@tce.edu

5. Dr.D.Nelson Jayakumar dnjayakumar@tce.edu6. Mr.M.Ramkumar mjayaramkumar@tce.edu

18EE440	CONTROL SYSTEMS	Category	L	Т	Р	Credit
		PC	2	1	-	3

Preamble

This course is to impart students a good understanding of fundamental principles in control engineering. The course includes: Mathematical Modelling of Linear Continuous Time Invariant Single Input - Single Output Dynamical Systems, Transfer Functions and State Space Models, Performance Specifications, Analysis and Design of Closed Loop Control Systems.

Prerequisite

• 18MA110 Engineering Calculus

• 18MA210 Matrices and Ordinary Differential Equations

• 18EE230 Electric Circuit Analysis

• 18EE350 Signals & Systems

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Determine the transfer function and state space model of given electrical, mechanical and electro-mechanical system	20
CO2	Analyse the time response characteristics of a given transfer function model	25
CO3	Analyse the frequency response characteristics of a given transfer function model	25
CO4	Analyse the closed loop characteristics of a given transfer function using root locus	20
CO5	Explain the effects of compensators in improving the performance of the system	5
CO6	Determine the controllability and observability of given LTI system	5

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

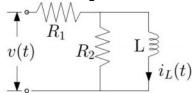
CO	TCE	Learning Dom	ain Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psycho	(X.Y.Z)
	Scale				

				motor	
CO1	TPS3	Apply	Value		1.2.10,2.1.1, 2.1.2, 2.3.1,2.3.2
CO2	TPS4	Analyse	Organise		1.2.10,2.1.1, 2.1.4, 2.3.1, 2.3.2,
					2.3.3
CO3	TPS4	Analyse	Organise		1.2.10,2.1.1, 2.1.4, 2.3.1, 2.3.4,
					3.2.3
CO4	TPS4	Analyse	Organise		1.2.10,2.1.1, 2.1.4, 2.4.4, 3.2.3
CO5	TPS3	Understand	Respond		1.2.10,2.1.1, 2.1.4, 2.3.1, 2.3.4,
					2.4.4
CO6	TPS3	Apply	Value		1.2.10,2.1.1, 2.1.4,2.3.1,2.3.2, 2.3.3

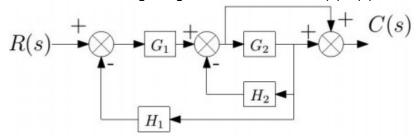
Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	М	L				М		М			S	S
CO 2	s	S	М	М				М		М			S	S
CO 3	s	s	М	М	М			М		М			S	S
CO 4	S	S	М	М	М			М		М			S	S
CO 5	М	L						М		М			М	М
CO 6	S	М	М	М				М		М			S	S

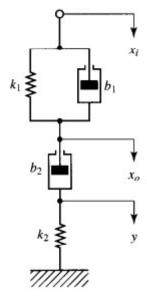
S- Strong; M-Medium; L-Low


Assessment Pattern: Cognitive Domain

Cognitive		ntinuous sessment	Tests	Assig	nment	Terminal	
Levels	1	2	3	1	2	3	Examinati
							on
Remember	10	10	10	-	-	-	10
Understand	20	20	20	-	-	-	20
Apply	70	70	70	50	50	50	70
Analyse				50	50	50	
Evaluate							
Create							

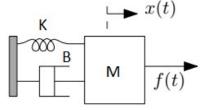

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):


1. For the circuit given below, determine the transfer function IL(s)/V(s)

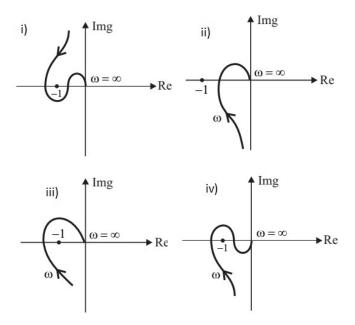
2. Reduce the block diagram given below and find C(s)/R(s)

3. For the mechanical system shown below, determine the transfer function Y(s)/Xi(s) and also State space model.


Course Outcome 2(CO2):

- 1. The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{0.4s + 1}{s(s + 0.6)}$.
 - a. Calculate the closed loop transfer function and calculate the response for unit step reference
 - b. Calculate the maximum peak overshoot

- 2. Consider the RLC circuit. When the switch is closed at time t=0, the voltage across capacitor varies as shown below. If $R=1\Omega$,
 - a. Calculate the values of L and C
 - b. Calculate peak time and maximum peak overshoot when the value R is doubled
 - c. From the results of b, comment on the effect of resistance in damping of output.



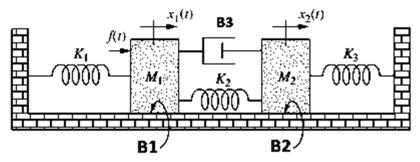
3. Consider the mechanical system shown below. When unit step force is applied, the steady state displacement is 2m, Maximum peak overshoot is 16%. Peak time is 2s. Determine the values of M, B and K

Course Outcome 3(CO3):

- 1. Sketch the Bode plot of the system G(s)H(s)=10(s+1)/s(s+10)(s+100) and calculate gain margin and phase margin
- 2. Choose the stable closed loop system from the polar plots shown below.

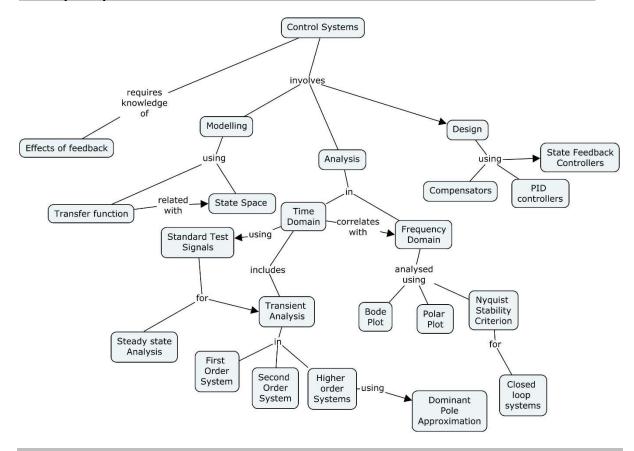
3. Consider unity feedback system with plant transfer function G(s) =K/s(s+1)(s+2). Using Nyquist stability criterion, determine the range of K for which the closed loop system is stable.

Course Outcome 4 (CO4):


- 1. Sketch the root locus of the system G(s)H(s)=K/s(s+1)(s+2) and calculate the value of K for maximum peak overshoot =16%.
- 2. Consider a unity feedback system with plant transfer function $G(s) = k/s(s^2+s+1)(s+2)$. Using Routh stability criterion find the range of K for the system to be stable
- 3. Sketch the root locus of the system $G(s)H(s) = \frac{K(s+3)}{s(s^2+2s+2)}$ and calculate the value of K for maximum peak overshoot =16%.

Course Outcome 5 (CO5):

- 1. Explain the effect of adding a zero in forward path of a transfer function
- 2. Explain the frequency response of lead compensator.
- 3. Explain the design procedure for lag compensator.


Course Outcome 6(CO6):

1. Determine the transfer function X2(s)/F(s) for the mechanical system shown below

- 2. Obtain controllable and observable canonical form of the system $G(s) = \frac{s^3 + 3s^2 + 4s + 4}{s^3 + 2s^2 + 2s + 2}$

Concept Map

Syllabus

Basic concepts: Industrial control examples, Feedback control: Open loop and Closed loop systems, Benefits of feedback, Transfer function models of linear time invariant systems. Concept of state variable, state space model. Mathematical models of electrical, mechanical and electromechanical systems, Block diagram reduction, signal flow graphs and Mason gain formula

Time domain analysis and stability: Test Signals, Steady state errors, Time response of First order and second order systems- Dominant pole approximation of higher order systems, Integral performance indices

Concept of Stability and Characteristic equation, Routh-Hurwitz criteria- Root-locus construction and interpretation, closed loop analysis using root locus, Time domain and root locus analysis using MATLAB

Frequency-domain analysis:

Frequency responses and Frequency domain specifications, Bode plot, polar plot, construction and interpretation, Nyquist stability criterion- Gain and phase margin, closed loop frequency response. Frequency domain analysis using MATLAB

Compensation:

Types of compensators, characteristics and effects of lead, lag, lag-lead compensators and P, PI and PID controllers

State Variable Analysis:

Relation between state space and transfer functions, canonical forms, solution of state equation, Eigen values and stability analysis, Controllability and observability, concept of state feedback control

Learning Resources

- 1. Norman S. Nise, Control Systems Engineering, 6th edition, John Wiley, 2010. (Indian edition)
- 2. IJ Nagrath and M Gopal, Control Systems engineering, 5th Edition, New Age International, 2007
- 3. Robert H Bishop and Richard C Dorf, Modern Control Systems, 12th Edition, Pearson Education, 2010
- 4. John JD Azzo, Constantine H Houpis, and Stuart N Sheldon, Linear Control Systems: Analysis and Design with MATLAB, 5th Edition, Taylor and Francis, 2003
- 5. B.C. Kuo, and F.Golnaraghi, Automatic Control Systems, 9th Edition. Wiley India Pvt limited 2014. (Student edition)
- 6. Katsuhiko Ogata, Modern Control Engineering, 5th edition, PHI, 2010
- 7. M Gopal, Control Systems-Principles and Design, 4th Edition, McGraw Hill India, 2012
- 8. NPTEL Online Course: Control Systems, URL: https://nptel.ac.in/courses/107106081/72

Course Contents and Lecture Schedule

Module	Topic	No.	of	Course
No.		Hours		Outcome
1	Basic concepts			
1.1	Industrial control examples, Feedback control: Open loop and Closed loop systems, Benefits of feedback	1		CO1
1.2	Transfer function models of linear time invariant systems	1		CO1
1.3	Mathematical models of electrical, mechanical and	3		CO1

	electromechanical systems		
1.4	Block Diagram reduction	2	CO1
1.5	Signal flow graph and mason gain formula	2	CO1
1.6	Concept of state variable, state space model	2	CO1
1.7	Relation between state space and transfer functions,	1	CO1
	canonical forms		
2	Time domain analysis and stability:		
2.1	Test Signals, Steady state errors	2	CO2
2.2	Time response of First order system	1	CO2
2.3	Time response of second order systems	2	CO2
2.4	Dominant pole approximation of higher order systems,	1	CO2
	Integral performance indices		
2.5	Concept of Stability and Characteristic equation	1	CO4
2.6	Routh –Hurwitz criteria	2	CO4
2.7	Root-locus construction and interpretation	2	CO4
2.8	Closed loop analysis using root locus	1	CO4
2.9	Time domain and root locus analysis using MATLAB	1	CO4
3	Frequency-domain analysis:		
3.1	Frequency responses and Frequency domain	1	CO3
	specifications		
3.2	Bode plot and interpretation	2	CO3
3.3	Polar plot and interpretation	1	CO3
3.4	Nyquist stability criterion	1	CO3
3.5	Gain and phase margin	1	CO3
3.6	Closed loop frequency response	2	CO3
3.7	Frequency domain analysis using MATLAB	1	CO3
4	Compensation		
4.1	Types of compensators, Characteristics and effects of	2	CO5
	lead, lag, lag-lead compensators		
4.2	P, PI and PID controllers	1	CO5
5	State Variable Analysis		
5.1	Solution of state equation	1	CO6
5.2	Controllability and observability	1	CO6
5.3	Concept of state feedback control	1	CO6
	Total	40	

Course Designers:

Prof.S.Sivakumar <u>sskeee@tce.edu</u>
Dr.S.Latha <u>sleee@tce.edu</u>

Prof M.Varatharajan varatharajan@tce.edu

18EE470	MEASUREMENTS AND	Category	L	T	P	Credit
	INSTRUMENTATION LAB	PC	-	-	2	1

Preamble

This course familiarizes the students in three basic aspects of measurements and instrumentation such as (i) measurement of non electric parameters, (ii) measurement of electric parameters and (iii) basic aspects data acquisition. Student can able to demonstrate the measurement of common industrial control parameters such as temperature & displacement. Also the students will get experience in utilizing the various parameters such as range, resolution & sampling frequency for selection of instruments. This course will also provide the experiences about measurement of current, voltage and power with the help of Transducers as well as with CT & PT. Finally this course also provides some exposures to basics of data acquisition.

Prerequisite

14EE250 Analog Devices and Circuits

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyse the influence of range, resolution and maximum sampling frequency on instrumentation performance	15
CO2	Measure electrical parameters using Sensors/Meters by Direct Data Acquisition	30
CO3	Produce the electricity consumption charges using the concept of Net metering	10
CO4	Obtain the static and dynamic characteristics of Sensors/Transducers	25
CO5	Acquire data using Networked measurement	10
CO6	Acquire Data using Instrument Control	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Lea	rning Don	nain Level	CDIO Curricular Components
#	Profici	Cognitiv	Affecti	Psychomotor	(X.Y.Z)
	ency	е	ve		
	Scale				
CO1	TPS3	Apply	Value	Mechanism	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
					,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
					4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1
CO2	TPS3	Apply	Value	Mechanism	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
		-			,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
					4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1

CO3	TPS3	Apply	Value	Mechanism	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
					,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
					4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1
CO4	TPS3	Apply	Value	Mechanism	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
					,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
					4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1
CO5	TPS4	Analyse	Organi	Complex	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
			se	Overt	,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
				Responses	4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1
CO6	TPS3	Apply	Value	Mechanism	1.2.9,2.1.1,2.1.5,2.2.3,2.3.1,2.3.2,3.1.1
					,3.1.2,3.1.5,3.1.4,3.2.1,3.2.2,3.2.3,3.2.
					4,3.2.5,3.2.6,3.3.1,4.4.14.4.3.4.5.1

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	Р	РО	PO1	PO1	PO1	PSO	PSO							
	0	2	3	4	5	6	7	8	9	0	1	2	1	2
	1													
CO1	S	М	L	L	S			М		М			S	S
CO2	S	М	L	L	S			М		М			S	S
CO3	S	М	L	L	М			М		М			S	S
CO4	S	М	L	L				М		М			S	S
CO5	S	S	М	М	S			М		М			S	S
CO6	S	М	L	L				М		М			S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember	-	-
Understand	-	-
Apply	50	50
Analyse	20	20
Evaluate	-	-
Create	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Practical Component/Observation

Perception	
Set	
Guided Response	
Mechanism	30
Complex Overt Responses	-
Adaptation	
Origination	-

List of Experiments/Activities with CO Mapping

E.No	Name of the experiment	со	No. of sessions
1.	Choice of sampling frequency and Aliasing phenomenon	CO1	1
2.	Choice of range and its impact on Accuracy of measurement	CO1	1
3.	Choice of Resolution and its impact on Accuracy of measurement	CO1	1
4.	True RMS measurement vs Average quantity based measurement of AC quantities	CO2	1
5.	Current Measurement using Current Transducer, Current Transformer	CO2	1
6.	Voltage Measurement using Voltage Transducer, Voltage Transformer	CO2	1
7.	Power measurement by data acquisition of voltage and current	CO2	1
8.	Power measurement from Wattage transducer using 4-20mA data transmission	CO2	1
9.	Measure the Net utilised energy	CO3	1
10.	Cold junction compensation of Thermocouple	CO4	1
11.	Time constant of TC/Thermistor	CO4	1
12.	Measurement of Temperature using RTD and Wheatstone's bridge	CO4	1
13.	Dynamic Characteristics of LVDT	CO4	1
14.	Speed Measurement using Digital Encoder	CO4	1
15.	Networked Measurement of Power	CO5	1
16.	Data Acquisition from DSO using Instrument control	CO6	1

Learning Resources

- 1. A.K. Sawhney, A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & Co, 2012.
- 2. E.O. Doebelin, Measurement Systems Application and Design, Tata McGraw Hill publishing company, 2003.
- 3. Kalsi H.S, Electronic Instrumentation, Tata McGraw-Hill 2003

Course Designers:

Dr.M.Geethanjali mgeee@tce.edu
 Dr.V.Prakash vpeee@tce.edu
 Dr.D.Nelson Jayakumar dnjayakumar@tce.edu
 Mr.M.Ramkumar mjayaramkumar@tce.edu

		Category	L	Т	Р	Credit	
18EE480 AC MACHINES LAB	AC MACHINES LAB	PC	0	0	2	1	
		-					

Preamble

This laboratory gives a practical exposure to the students to fundamental concepts regarding AC Machines that are currently used in Electrical Systems. The students also learn to select the suitable AC Electrical Machines for an application based on its characteristics, perform suitable capacitor additions to improve power factor and to familiarize the standard testing procedures of AC Machines. The students can also perform evaluation of efficiency improvement by switching over to Adjustable speed drives and also can know about the various harmonic components that arise due to Adjustable speed drives.

Prerequisite

18EE280 - Electrical Workshop

18EE320 - DC Machines and Transformers

Course outcomes

COs	Course outcomes	Weightage
No.		%
CO1	Obtain the load characteristics of AC Generator (Salient Pole & Cylindrical Rotor type) experimentally	20
CO2	Obtain the load characteristics of AC Motor (Squirrel Cage, Slip ring, Single Phase & Synchronous) experimentally	20
CO3	Demonstrate predetermination efficiency of AC Motor experimentally	20
CO4	Obtain the voltage regulation of AC Generators using EMF, MMF and ZPF methods	20
CO5	Obtain the characteristics of Synchronous motor experimentally	10
CO6	Demonstrate experimentally a generative action of induction machine	10

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	nain Level	CDIO Curricular Components			
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)		
	Scale						
CO1	TPS3	Apply	Value	Mechanism	1.2., 2.2.3, 2.2.4,2.3.1, 2.4.1,		
					2.5.1, 3.1.1, 3.1.2. 3.2.3		

CO2	TPS3	Apply	Value	Mechanism	1.2., 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.4.3, 2.5.1, 3.1.2, 3.1.1, 3.2.3
CO3	TPS3	Apply	Value	Mechanism	1.2., 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.4.3,2.5.1, 3.1.2, 3.1.1, 3.2.3
CO4	TPS3	Apply	Value	Mechanism	1.2., 2.2.3, 2.2.4,2.3.1, 2.4.1,
		-			2.4.3,2.5.1, 3.1.2, 3.1.1, 3.2.3
CO5	TPS3	Apply	Value	Mechanism	1.2., 2.2.3, 2.2.4,2.3.1, 2.4.1,
					2.5.1, 3.1.2 3.1.1, 3.2.3
CO6	TPS2	Understand	Respond	Guided	1.2., 2.2.3, 2.2.4,2.3.1, 2.5.1,
				Response	3.1.2, 3.1.1, 3.2.3
				-	

Mapping with Programme Outcomes

Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	S	М	L	L				M	S	M			S	
CO2	S	М	L	L		М	М	M	S	M			S	
CO3	S	М	L	L				M	S	M			S	
CO4	S	М	L	L		М	М	M	S	M			S	
CO5	S	М	L	L				M	S	M			S	
CO6	М	L				М	S	M	S	M			М	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand	10	10
Apply	40	40
Analyse	20	20
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Practical Component/Observation

Perception		
Set		
Guided Response		
Mechanism	30	
Complex Overt Responses		
Adaptation		
Origination		

List of Experiments/Activities with CO Mapping

E.No	Name of the experiment		No. of sessions
Asynch	ronous Machines		
1.	Determination of Induction Motor efficiency using circuit model	CO3	1
2.	Performance Characteristics of Induction Motor	CO2	1
3.	Performance Characteristics of Induction Motor using VFD	CO2	1
Single F	Phase Induction Motor		
4.	Performance Characteristics of Single Phase Induction Motor	CO2	1
Induction	on Generator		
5.	Load Characteristics of Induction Generator	CO6	1
Synchronous Machines			
6.	V and inverted V curves of Synchronous Motor	CO5	1
7.	Slip test on Salient Pole Synchronous generator	CO1	1
8.	Regulation characteristics of Cylindrical pole Alternator	CO1	1
9.	Synchronization of Alternators	CO4	1
10.	Load Characteristics of Alternators	CO1	1

Learning Resources

- H.Wayne Beaty & Jame. L.Kirtley.Jr "Electric Motor Handbook", McGraw-Hill, USA, 1st Edition, 1998.
- 2. A.K.Sawhney and A.Chakrabarti, "A course in Electrical Machine Design",6th Edition, Dhanpat Rai & Co (P) Ltd., 2006.
- 3. Gupta.J.B,"Theory of Performances of Electrical Machines' Katson, 7th Edition, 1987
- 4. Vincent Deldoro, "Electromechanical Energy Conversion" PHI III edition,

5. M.G.Say, The Performance and Design of Alternating Current machines, Tata-McGraw Hill.

Course Designers

1. Dr. S. Latha, sleee@tce.edu

2. Dr. V. Prakash, vpeee@tce.edu

3. Dr. R. Rajan Prakash r_rajan prakash@tce.edu

18EE490	PROJECT MANAGEMENT	Category	L	Т	Р	Credit
		HSS	3	0	0	3

Preamble

Project management has been proven to be the most effective method of delivering products within cost, schedule, and resource constraints. It provides the skills to ensure that the projects are completed on time and on budget while giving the user the product, they expect. This course gives strong working knowledge of the basics of project management and be able to immediately use that knowledge to effectively manage work projects.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

Cos	Course outcomes	Weightage (%)
CO1	Explain the importance of project management and methodologies	15%
CO2	Prepare a project proposal and apply methods for project planning and analysis	20%
CO3	Apply methods to examine the risk and social cost benefit while implementing a project	15%
CO4	Identify the critical path and time in scheduling a set of project-activities	20%
CO5	Explain resource allocation and levelling and the use of PM software	15%
CO6	Outline the importance and various activities during project closure and prepare a project report	15%

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dor	main Level		CDIO Curricular Components				
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)				
	Scale			-					
CO1	TPS2	Understand	Respond		2.3.1, 2.5.2, 4.2.1,4.3.4				
CO2	TPS3	Apply	Value		2.3.2, 2.4.3, 2.5.4, 3.2.3,				
		113			3.2.4,4.3.4				
CO3	TPS3	Apply	Value		2.1.4, 2.4.4, 4.1.5,4.3.4				
CO4	TPS3	Apply	Value		2.4.3, 2.4.4,4.3.4				
CO5	TPS2	Understand	Respond		3.2.4,4.3.4				
CO6	TPS3	Understand	Respond		2.1.5, 3.2.3, 3.2.4, 4.3.4				

Mapping with Programme Outcomes

CO	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1.								M		M	S			
CO2.								M		M	S			
CO								M		M	S			
3														
CO								M		M	S			
4														
CO								M		M	S			
5.														
CO								M		M	S			
6.														İ

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's	Contii Tests	nuous	Assessment	Assig	gnments	Terminal	
Category	1	2	3	1	2	3	Examination
Remember	10	10	10	-	-	-	10
Understand	60	40	40	-	-	-	40
Apply	30	50	50	100	100	100	50
Analyse	0	0	0				0
Evaluate	0	0	0				0
Create	0	0	0				0

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

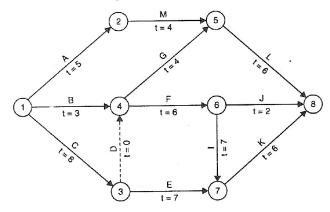
- 1. Identify the suitable project management methodology for an organization change in an Engineering college.
- 2. Explain the necessity of project management.
- 3. Explain in detail about any two project management methodologies with examples.

Course Outcome 2 (CO2):

- 1. Prepare a project proposal for the new technical function to be organized by you.
- 2. The sales of a certain product during a fourteen year period have been as follows: Find the least squares regression line for the data given.

Period	Sales	Period	Sales
1	2000	8	4000
2	2200	9	3900

3	2100	10	4000
4	2300	11	4200
5	2500	12	4300
6	3200	13	4900
7	3600	14	5300

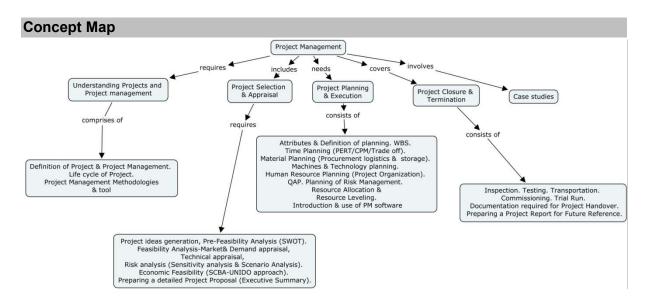

 Consider a scenario that you are organizing an Electrical Association event on software contest. Do SWOT analysis for this assignment. Explain the outcome of the analysis.

Course Outcome 3 (CO3)

- 1. Prepare a work breakdown structure for a shifting a software company from one location to another and illustrate the need of WBS
- 2. Do the UNIDO-SCBA analysis for the new government road projects.
- 3. Demonstrate the risks associated in a electronics project implementation.

Course Outcome 4 (CO4)

- 1. Create a customer database for the Modesto league baseball team. Draw a project network Complete the forward and backward pass, compute activity slack, and identify the critical path. How long will this project take? How sensitive is the network schedule? Calculate the free slack and total slack for all noncritical activities.
- 2. The following nework shows information related to a project that involves merging two marketing firms. Determine the Earliest start time, Earliest finish time, Latest start time and latest completion time for each activity. List the critical activities and determine the project completion duration.



Course Outcome 5 (CO5)

- 1. Explain resource allocation in detail
- 2. Discuss various PM software that are being used widely.
- 3. Explain about the resource levelling

Course Outcome 6 (CO6)

- 1. Discuss the key elements to be included in project report.
- 2. Develop a project report for the given problem scenario.
- 3. List out the various activities to be considered in project closure.

Syllabus

Understanding Projects and Project management: Definition of Project & Project Management. Life cycle of Project. Project Management Methodologies and tools.

Project Selection & Appraisal: Project ideas generation, Pre-Feasibility Analysis -SWOT Feasibility Analysis-Market& Demand appraisal, Technical appraisal, Risk analysis-Sensitivity analysis & Scenario Analysis. Economic Feasibility -SCBA-UNIDO approach. Preparing a detailed Project Proposal (Executive Summary).

Project Planning& Execution: Attributes & Definition of planning. WBS. Time Planning - PERT/CPM/Trade off. Material Planning - Procurement logistics & storage. Machines & Technology planning. Human Resource Planning in Project Organization. Quality Assurance Plan. Planning of Risk Management. Resource Allocation & Resource Levelling. Introduction & use of PM software.

Project Closure & Termination: Inspection. Testing. Transportation. Commissioning. Trial Run. Documentation required for Project Handover. Preparing a Project Report for Future Reference, Templates.

Case Studies

Learning Resources

- 1. Prasanna Chandra, Projects: Planning, Analysis, Selection, Financing, Implementation and Review,Mc Graw Hill, 8th edition, 2015
- 2. Project planning and control using PERT and CPM, Dr.P.C.Punmia, Lakshmi publications, 2006
- 3. Project Management- A Managerial Approach to Planning, Scheduling, and Controlling Harold Kerzner, 10th edition John Wiley & Sons, Inc.
- 4. Project Management Institute (PMBOK) Guide, 5th Edition

Lecture Schedule

1.1 Understanding Projects and Project management: 1.1 Definition of Project & Project Management. 1.2 Life cycle of Project. 1.3 Project Management Methodologies 1.4 Project Management tools 2 Project Selection & Appraisal: 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2.2 Feasibility Analysis-Market& Demand appraisal, 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2.2 Feasibility Analysis-Market& Demand appraisal, 2.3 Technical appraisal 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2.5 Economic Feasibility (SCBA-UNIDO approach). 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning & Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CPM/Trade off 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 5 Case Studies 1 CO1 1 CO2 2 CO3 2 CO2 2 CO3 3 CO4 3 CO4 3 CO4 3 CO4 3 CO5 4 Project Closure & Termination: 4 Inspection. Testing. Transportation. 4 Project Closure & Termination: 4 Preparing a Project Report for Future Reference. 5 Case Studies	S.No.	Topic	No. of Lectures	COs
1.2 Life cycle of Project. 1 CO1 1.3 Project Management Methodologies 2 CO1 1.4 Project Management tools 1 CO1 2 Project Selection & Appraisal: 2 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2 CO2 2.2 Feasibility Analysis-Market& Demand appraisal, 2 CO2 2.3 Technical appraisal 1 CO2 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2 CO3 2.5 Economic Feasibility (SCBA-UNIDO approach). 2 CO3 2.5 Economic Feasibility (SCBA-UNIDO approach). 2 CO3 2.6 Preparing a detailed Project Proposal (Executive Summary). 1 CO2 3.1 Attributes & Definition of planning. WBS. 1 CO2 3.2 Time Planning (PERT). 3 CO4 3.3 CPM/Trade off 3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 1 CO5 3.5 Human Resource Planning (Project Organization). 1 <	1	Understanding Projects and Project management:		
1.3 Project Management Methodologies 1.4 Project Management tools 2 Project Selection & Appraisal: 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2.2 Feasibility Analysis-Market& Demand appraisal, 2.3 Technical appraisal 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2.5 Economic Feasibility (SCBA-UNIDO approach). 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 4 Project Report for Future Reference. 4 Preparing a Project Report for Future Reference.		, ,	1	
1.4 Project Management tools 1 CO1 2 Project Selection & Appraisal: 2 CO2 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2 CO2 2.2 Feasibility Analysis-Market& Demand appraisal, 2 CO2 2.3 Technical appraisal 1 CO2 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2 CO3 2.5 Economic Feasibility (SCBA-UNIDO approach). 2 CO3 2.6 Preparing a detailed Project Proposal (Executive Summary). 1 CO2 3.1 Attributes & Definition of planning. WBS. 1 CO2 3.2 Time Planning (PERT). 3 CO4 3.3 CPM/Trade off 3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 1 CO5 3.5 Human Resource Planning (Project Organization). 1 CO5 3.6 QAP. 1 CO5 3.7 Planning of Risk Management. 1 CO5 3.8 Resource Allocation & Resource Leveling. 1 CO5	1.2	Life cycle of Project.	1	CO1
Project Selection & Appraisal: 2.1 Project ideas generation, Pre-Feasibility Analysis -SWOT. 2.2 Feasibility Analysis-Market& Demand appraisal, 2.3 Technical appraisal 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2.5 Economic Feasibility (SCBA-UNIDO approach). 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CPM/Trade off 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 1 CO2 4 CO3 4 CO3 4 CO4 4 Preparing a Project Report for Future Reference.	1.3		2	CO1
2.1Project ideas generation, Pre-Feasibility Analysis -SWOT.2CO22.2Feasibility Analysis-Market& Demand appraisal,2CO22.3Technical appraisal1CO22.4Risk analysis (Sensitivity analysis & Scenario Analysis).2CO32.5Economic Feasibility (SCBA-UNIDO approach).2CO32.6Preparing a detailed Project Proposal (Executive Summary).1CO23Project Planning& Execution:1CO23.1Attributes & Definition of planning. WBS.1CO23.2Time Planning (PERT).3CO43.3CPM/Trade off3CO43.4Material Planning (Procurement logistics & storage), Machines & Technology planning.1CO53.5Human Resource Planning (Project Organization).1CO53.6QAP.1CO53.7Planning of Risk Management.1CO53.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6		, ,	1	CO1
2.2 Feasibility Analysis-Market& Demand appraisal, 2. CO2 2.3 Technical appraisal 1. CO2 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2. CO3 2.5 Economic Feasibility (SCBA-UNIDO approach). 2. CO3 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4 Project Closure & Termination: 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 4 Preparing a Project Report for Future Reference.				
2.3 Technical appraisal 2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2.5 Economic Feasibility (SCBA-UNIDO approach). 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 1 CO3 4 Project Report for Future Reference.		, ,		
2.4 Risk analysis (Sensitivity analysis & Scenario Analysis). 2 CO3 2.5 Economic Feasibility (SCBA-UNIDO approach). 2 CO3 2.6 Preparing a detailed Project Proposal (Executive Summary). CO2 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 1 CO2 3.2 Time Planning (PERT). 3 CO4 3.3 CPM/Trade off 3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 1 CO5 3.6 QAP. 1 CO5 3.7 Planning of Risk Management. 1 CO3 3.8 Resource Allocation & Resource Leveling. 1 CO5 3.9 Introduction & use of PM software. 2 CO5 4 Project Closure & Termination: 4.1 Inspection. Testing. Transportation. 1 CO6 4.2 Commissioning. Trial Run. 1 CO6 4.3 Documentation required for Project Handover. 1 CO6 4.4 Preparing a Project Report for Future Reference. 1 CO6	2.2	Feasibility Analysis-Market& Demand appraisal,	2	CO2
2.5 Economic Feasibility (SCBA-UNIDO approach). 2.6 Preparing a detailed Project Proposal (Executive Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 1 CO3 4 CO6 4.4 Preparing a Project Report for Future Reference.	2.3	Technical appraisal	1	CO2
2.5Economic Feasibility (SCBA-UNIDO approach).2CO32.6Preparing a detailed Project Proposal (Executive Summary).1CO23Project Planning& Execution:3CO23.1Attributes & Definition of planning. WBS.1CO23.2Time Planning (PERT).3CO43.3CPM/Trade off3CO43.4Material Planning (Procurement logistics & storage), Machines & Technology planning.1CO53.5Human Resource Planning (Project Organization).1CO53.6QAP.1CO53.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	2.4	Risk analysis (Sensitivity analysis & Scenario Analysis).	2	CO3
Summary). 3 Project Planning& Execution: 3.1 Attributes & Definition of planning. WBS. 3.2 Time Planning (PERT). 3.3 CO4 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 4 CO2 3 CO2 3 CO2 4 CO3 4 CO3 5 CO6 4 CO6	2.5		2	CO3
3.1Attributes & Definition of planning. WBS.1CO23.2Time Planning (PERT).3CO43.3CPM/Trade off3CO43.4Material Planning (Procurement logistics & storage), Machines & Technology planning.1CO53.5Human Resource Planning (Project Organization).1CO53.6QAP.1CO53.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	2.6		1	CO2
3.2Time Planning (PERT).3CO43.3CPM/Trade off3CO43.4Material Planning (Procurement logistics & storage), Machines & Technology planning.1CO53.5Human Resource Planning (Project Organization).1CO53.6QAP.1CO53.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6				
3.3 CPM/Trade off 3.4 Material Planning (Procurement logistics & storage), Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 4.1 Inspection. Testing. Transportation. 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 4 CO6			-	
3.4Material Planning (Procurement logistics & storage), Machines & Technology planning.1CO53.5Human Resource Planning (Project Organization).1CO53.6QAP.1CO53.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:2CO54.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6			_	
Machines & Technology planning. 3.5 Human Resource Planning (Project Organization). 3.6 QAP. 1 CO5 3.7 Planning of Risk Management. 3.8 Resource Allocation & Resource Leveling. 3.9 Introduction & use of PM software. 2 CO5 4 Project Closure & Termination: 4.1 Inspection. Testing. Transportation. 1 CO6 4.2 Commissioning. Trial Run. 1 CO6 4.3 Documentation required for Project Handover. 1 CO6 4.4 Preparing a Project Report for Future Reference. 1 CO6			3	
3.6QAP.1CO53.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	3.4		1	CO5
3.7Planning of Risk Management.1CO33.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:1CO64.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	3.5	Human Resource Planning (Project Organization).	1	CO5
3.8Resource Allocation & Resource Leveling.1CO53.9Introduction & use of PM software.2CO54Project Closure & Termination:4.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	3.6	QAP.	1	CO5
3.9 Introduction & use of PM software. 4 Project Closure & Termination: 4.1 Inspection. Testing. Transportation. 4.2 Commissioning. Trial Run. 4.3 Documentation required for Project Handover. 4.4 Preparing a Project Report for Future Reference. 2 CO5 CO5 CO6 CO6 CO6	3.7	Planning of Risk Management.	1	CO3
4Project Closure & Termination:4.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	3.8	Resource Allocation & Resource Leveling.	1	CO5
4.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	3.9	Introduction & use of PM software.	2	CO5
4.1Inspection. Testing. Transportation.1CO64.2Commissioning. Trial Run.1CO64.3Documentation required for Project Handover.1CO64.4Preparing a Project Report for Future Reference.1CO6	4	Project Closure & Termination:		
4.3 Documentation required for Project Handover. 1 CO6 4.4 Preparing a Project Report for Future Reference. 1 CO6	4.1	Inspection. Testing. Transportation.	1	CO6
4.4 Preparing a Project Report for Future Reference. 1 CO6	4.2	Commissioning. Trial Run.	1	CO6
	4.3	Documentation required for Project Handover.	1	CO6
5 Case Studies 3 CO6	4.4		1	CO6
	5	Case Studies	3	CO6

Total	36	

Course Designers

1.Prof. S.Sivakumarsiva@tce.edu2.Dr.D.Kavithadkavitha@tce.edu3.Mr.S.Surendharssreee@tce.edu

18CHAB0	CONSTITUTION OF INDIA	Category	L	Т	Р	Credit
		AC	2	0	0	0

Preamble

On the successful completion of the course, the students will be able to explain the basic features and fundamental principles of Constitution of India. The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the "basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of "Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism" in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India's legacy of "diversity". It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own AICTE Model Curriculum for Mandatory Courses & Activities (Non-Credit) for Undergraduate Degree in Engineering & Technology ancient legal heritage and cultural values. No law can be "static" and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it "as one of the strongest court in the world"

Course Outcome:

On the successful completion of the course students will be able to

CO1 | Explain the meaning of the constitution law and constitutionalism and | Understand

	Historical perspective of the Constitution of India	
CO2	Explain the salient features and characteristics of the Constitution of	Understand
	India, scheme of the fundamental rights and the scheme of the	
	Fundamental Duties and its legal status	
CO3	Explain the Directive Principles of State Policy, Federal structure and	Understand
	distribution of legislative and financial powers between the Union and	
	the States, and Parliamentary Form of Government in India	
CO4	Explain the amendment of the Constitutional Powers and Procedure,	Understand
	the historical perspectives of the constitutional amendments in India,	
	and Emergency Provisions.	
CO5	Explain the Local Self Government – Constitutional Scheme in India,	Understand
	Scheme of the Fundamental Right to Equality,	
CO6	Explain the scheme of the Fundamental Right to certain Freedom	Understand
	under Article 19, and Scope of the Right to Life and Personal Liberty	
	under Article 21	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	L	-	-	-	М	-	М	-	L	-	-
CO2	М	L	-	-	-	М	-	М	-	L	-	-
CO3	М	L	-	-	-	М	-	M	-	L	-	-
CO4	М	L	-	-	-	М	-	М	-	L	-	-
CO5	М	L	-	-	-	М	-	М	-	L	-	-
CO6	М	L	-	-	-	М	-	М	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

- 1. Meaning of the constitution law and constitutionalism
- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation
- 7. Federal structure and distribution of legislative and financial powers between the Union and the States
- 8. Parliamentary Form of Government in India The constitution powers and status of the President of India
- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions: National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21

Assessment Pattern

Bloom's category	Continuous Tests	Seminar	
Disom s sulegery	1	2	-
Remember	40	40	0
Understand	60	60	100
Apply	0	0	0
Analyze	0	0	0
Evaluate	0	0	0
Create	0	0	0

References

- 1. Durga Das Basu, 'Introduction to The Constitution of India', LexisNexis Butterworths Wadhwa, 20th Edition, Reprint 2011.
- 2. Constitution of India, National Portal of India, Web link: https://www.india.gov.in/my-government/constitution-india

Course Designers:

1. Adapted from AICTE Model Curriculum for Undergraduate Degree Courses in Engineering & Technology, Volume-II, January 2018.

CURRICULUM AND DETAILED SYLLABI FOR

B.E. EEE DEGREE PROGRAMME

FIFTH TO EIGHTH SEMESTER

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING (A Government Aided Autonomous Institution affiliated to Anna University) MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. EEE Degree Programme COURSES OF STUDY

(For the candidates admitted from 2018-19)

FIFTH SEMESTER

Course Code	Name of the Course	Category	No	o. of H / We	lours ek	Credits	
			L	Т	Р		
THEORY							
18EE510	Generation, Transmission and Distribution	PC	2	1		3	
18EE520	Microcontrollers	PC	3	-	-	3	
18EE530	Power Electronics	PC	3	-	-	3	
18EE540	Accounting and Finance	HSS	3	-	-	3	
18YYGX0	General Elective	GE	3	-	-	3	
18EEPX0	Programme Elective	PE				3	
THEORY C	UM PRACTICAL						
18ES590	System Thinking	ES	1	-	2	2	
PRACTICA	L .	<u> </u>					
18EE570	Microcontrollers Lab	PC	-	-	2	1	
18EE580	Control and Automation Lab	PC	-	-	2	1	
MANDATO	RY AUDIT COURSE						
18CHAC0	Essence of Indian Knowledge	AC	2	-	-	0	
	Total	l				22	

SIXTH SEMESTER

Course Code	Name of the Course	Category	No. of Hours / Week			Credits			
			L	T	Р				
THEORY									
18EE610	Power System Analysis	PC	3	-	-	3			
18EE620	Data Structures	ES	3	-	-	3			
18EEPX0	18EEPX0 Programme Elective					3			
18XXXX0	Elective	PE/GE/FE				3			
18XXXX0	Elective	ES				3			
PRACTICA	ÀL .								
18EE670	Energy Management System Laboratory	PC	-	-	2	1			
18EE680	Power Electronics and Drives Lab	PC	-	-	2	1			
18ES690 Engineering Design Project		Project	-	-	6	3			
	Total								

SEVENTH SEMESTER

Course Code	Name of the Course	Category	No	No. of Hour / Week		Credits			
			L	Т	Р				
THEORY									
18EE710	Electric Power Utilization	PC	3	-	-	3			
18EEPX0	Programme Elective	PE				3			
18EEPX0	Programme Elective	PE				3			
18EEPX0	Programme Elective	PE				3			
18XXXX0	Elective	PE/GE/FE				3			
PRACTICA	ÀL .		•						
18EE770	Electric Power Systems Laboratory	PC	-	-	2	1			
18ES790	Capstone Design Project	Project	-	-	6	3			
	Total								

EIGHTH SEMESTER

Course Code	Name of the Course	Category	No	No. of Hours / Week				Credits	
			L	Т	Р				
THEORY									
18EEPX0	Programme Elective	PE				3			
18XXXX0	Elective	PE/GE/FE				3			
PRACTICA	PRACTICAL								
18EE890	8EE890 Project Project		-	-	18	9			
Total									

BS : Basic Science ES : Engineering Science PC : Programme Core

PE : Programme Elective ; GE: General Elective; FE: Foundation Elective

L : Lecture
T : Tutorial
P : Practical

Note:

1 Hour Lecture/week is equivalent to 1 credit

1 Hours Tutorial/week is equivalent to 1 credit

2 Hours Practical/week is equivalent to 1 credit

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI – 625 015 B.E. EEE Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2018-19onwards)

FIFTH SEMESTER

S.No.	Course	Name of the	Duration		Marks		Minimum Marks	
	Code	Course	of				for Pa	ass
			Terminal	Contin	Termin	Max.	Terminal	Total
			Exam. in	uous	al	Mark	Exam	
			Hrs.	Asses	Exam	s		
				sment				
				*				
THEOR	Y		<u> </u>	I	<u> </u>		<u> </u>	
1	18EE510	Generation,	3	50	50	100	25	50
		Transmission and						
		Distribution						
2	18EE520	Microcontrollers	3	50	50	100	25	50
3	18EE530	Power Electronics	3	50	50	100	25	50
4	18EE540	Accounting and	3	50	50	100	25	50
		Finance						
5	18YYGX0	General Elective	3	50	50	100	25	50
6	18EEPX0	Programme	3	50	50	100	25	50
		Elective						
		THEO	RY CUM PRA	ACTICAL			'	
7	18ES590	System Thinking	-	50	50	100	25	50
PRACT	ICAL	•	1					
8	18EE570	Microcontrollers	3	50	50	100	25	50
		Lab						
9	18EE580	Control and	3	50	50	100	25	50
		Automation Lab						

SIXTH SEMESTER

S.No.	Course	Name of the	Duration		Marks		Minimum	Marks
	Code	Course	of				for Pass	
			Terminal	Contin	Termin	Max.	Terminal	Total
			Exam. in	uous	al	Mark	Exam	
			Hrs.	Asses	Exam	s		
				sment				
				*				
THEOR	Υ	1		1				
1	18EE610	Power System	3	50	50	100	25	50
		Analysis						
2	18EE620	Data Structures	3	50	50	100	25	50
3	18EEPX0	Programme	3	50	50	100	25	50
		Elective						
4	18XXXX0	Elective	3	50	50	100	25	50
5	18XXXX0	Elective	3	50	50	100	25	50
PRACT	ICAI							
6	18EE670	Energy	3	50	50	100	25	50
	1022070	Management					20	
		System Laboratory						
7	18EE680	Power Electronics	3	50	50	100	25	50
,	.022000	and Drives Lab						
8	18ES690	Engineering Design	_	50	50	100	25	50
	100000	Project	_		30		20	50
		i roject						

SEVENTH SEMESTER

S.No.	Course Code			Duration Marks of			Minimum Marks for Pass			
			Terminal Exam. in Hrs.	Contin uous Asses sment	Termin al Exam	Max. Mark s	Terminal Exam	Total		
THEOR	Y			'						
1	18EE710	Electric Power Utilization	3	50	50	100	25	50		
2	18EEPX0	Programme Elective	3	50	50	100	25	50		
3	18EEPX0	Programme Elective	3	50	50	100	25	50		
4	18EEPX0	Programme Elective	3	50	50	100	25	50		
5	18XXXX0	Elective	3	50	50	100	25	50		
PRACT	ICAL									
6	18EE770	Electric Power Systems Laboratory	3	50	50	100	25	50		
7	18ES790	Capstone Design Project	-	50	50	100	25	50		

EIGHTH SEMESTER

S.No.	Course Code	Name of the Course	Duration of Terminal Exam. in Hrs.	Contin uous Asses sment	Marks Termin al Exam	Max. Mark s	Minimum for Pa Terminal Exam		
THEOR	<u> </u> Y			*					
1	18EEPX0	Programme Elective	3	50	50	100	25	50	
2	18XXXX0	Elective	3	50	50	100	25	50	
PRACT	PRACTICAL								
3	18EE890	Project	-	50	50	100	25	50	

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

18EE510	GENERATION, TRANSMISSION AND	Category	L	Т	Р	Credit
10010	DISTRIBUTION	PC	2	1	0	3

Preamble

The objective of any power system is to generate electrical energy in sufficient quantity at various locations, to transmit it as a bulk to various load centers and to distribute it with different voltage levels to various consumers with good quality and reliability. To maintain the quality and reliability of supply, the voltage and frequency are to be maintained at specified values, with minimum voltage drop and power loss at an economic price. This course introduces the technical aspects of power generation from non-renewable and renewable energy sources. The calculation of network parameters and performance indices of transmission lines, voltage and current calculation in distribution lines and study of insulators and underground cables are also included.

Prerequisite

18EE230 : Electric Circuit Analysis 18EE240 : Electromagnetic Fields

18EE320 : DC Machines & Transformers

18EE420: AC Machines

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %					
CO1	Explain the methods of electric power generation using conventional and non-conventional energy sources.	20					
CO2	Compute the transmission network parameters for various configurations.	15					
CO3	Compute the performance indices of transmission lines using 20 nominal-T, π, rigorous methods and Power circle diagram.						
CO4	Explain the construction of various types of insulators and underground cables.	Explain the construction of various types of insulators and 5					
CO5	Compute the string efficiency of suspension insulators.	10					
CO6	Compute the grading parameter (thickness and location of different insulating materials and inter-sheaths) for uniform dielectric stress in UG cables.	10					
CO7	Compute the voltages and currents for a given distribution System.	20					

^{***} Weightage depends on Bloom's Level and number of contact hours.

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			-	
CO1	TPS2	Understand	Respond		1.2, 2.3.1,3.2.3
CO2	TPS3	Apply	Value		1.2, 2.1.5,3.2.3
CO3	TPS3	Apply	Value		1.2, 2.1.5,3.2.3
CO4	TPS2	Understand	Respond		1.2, 2.3.1,3.2.3
CO5	TPS3	Apply	Value		1.2, 2.1.5,3.2.3
CO6	TPS3	Apply	Value		1.2, 2.1.5,3.2.3
CO7	TPS3	Apply	Value		1.2, 2.1.5,3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

			- 3					- 3						
Cos	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
	0	2	3	4	5	6	7	8	9	0	1	2	1	2
	1													
CO1	М	L						М		М			М	
CO2	S	М	L					М		М			S	
CO3	S	М	L					М		M			S	
CO4	М	L						M		М			М	
CO5	S	M	L					М		М			S	
CO6	S	M	L					М		М			S	
CO7	S	М	L					М		M			S	

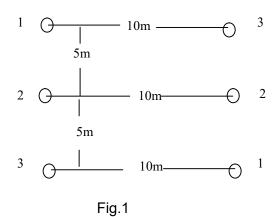
S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive		ontinu Assessn	ous nent Tests	Assignm	nent	Terminal		
Levels	1	2	3	1	2	3	Examinati	
							on	
Remember	20	10	10				10	
Understand	40	40	40				40	
Apply	40	50	50	100	100	100	50	
Analyse	0	0	0				0	
Evaluate	0	0	0				0	
Create	0	0	0				0	

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-


Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Explain the basic thermal power plant with the help of suitable diagrams.
- 2. Describe (i) Basic components of wind electric system (ii) Standalone Solar PV systems.
- 3. Discuss the merits and demerits of Nuclear power plant.

Course Outcome 2 (CO2):

1. The six conductors of a double circuit three phase line are arranged as shown in Fig.1 The dia of each conductor is 1.5cm. Find the inductive and capacitive reactance to neutral and the charging current per km per phase at 66 KV and 50Hz, assuming that the line is transposed.

- 2. A single-phase overhead transmission line consists of two solid aluminum conductors having a radius of 2.5 cm, with a spacing 3.6 m between centers. (a) Determine the total line inductance in mH/m. (b) Given the operating frequency to be 60 Hz, find the total inductive reactance of the line in Ω/km . (c) If the spacing is doubled to 7.2 m, how does the reactance change?
- 3. Fig. 2 shows the conductor configuration of a completely transposed three-phase overhead transmission line with bundled phase conductors. All conductors have a radius of 0.74 cm with a 30-cm bundle spacing. (a) Determine the inductance per phase in mH/km (b) Find the inductive line reactance per phase in Ω /km at 60 Hz.

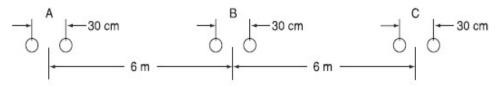


Fig. 2

Course Outcome 3 (CO3):

1. A balanced 3 phase load of 40MW is supplied at 132KV, 50 Hz and 0.8 p.f lagging by means of transmission line. The series impedance of a single conductor is (20+j50) ohms and the total phase-neutral admittance is 315 x 10^{-6} mho. Using nominal-T and - π methods, determine: (a)the A,B,C, and D constants (b)receiving end voltage and (c)regulation of the line.

2. A 132kV, 3-phase, 50Hz transmission line 200km long delivers a load of 50MW at 0.9 PF lagging 110kV has the following distributed parameters: L =1.3x10⁻³ H/km, C = 9 x10⁻⁹ F/km R = 0.2 Ω /km. Find the generalized constants. Find the maximum power transfer capacity of the line.

Course Outcome 4 (CO4):

- 1. Discuss the various types of insulators and their applications.
- 2. Consider a three-core, three-phase, 50 Hz, 11 kV cable whose conductors are denoted as, RY and B in the Fig.3 The inter-phase capacitance(C1) between each line conductor and the sheath is 0.4 F m. Find the per-phase charging current.

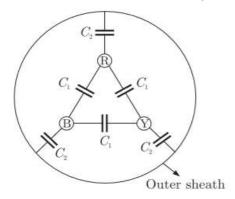
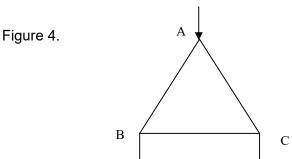


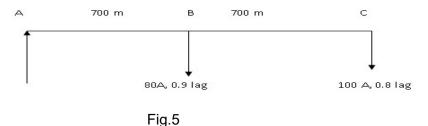
Fig.3

Course Outcome 5 (CO5):

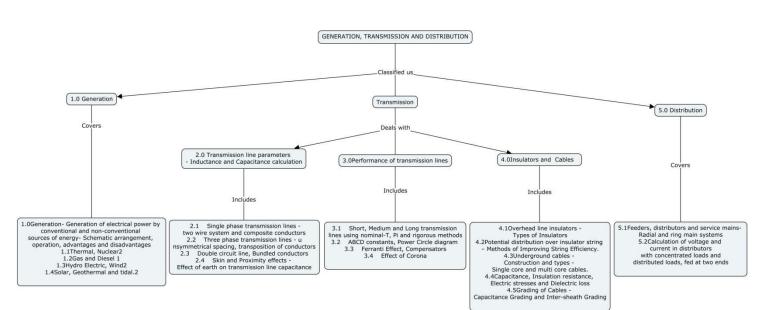
- 1. Calculate the string efficiency of a 3 unit suspension insulator if the capacitance of the link pins to earth and the line are respectively 25% and 10% of self capacitance of each unit. What should be the values of link pins to the line C for 100% string efficiency?
- 2. Each of the three insulators forming a string has a self-capacitance of C Farads. The shunting capacitance of the connecting network of each insulator is 0.2C to earth and 0.15C to the line. A guard ring increases the capacitance to the line of the network of the lowest insulator to 03C. Calculate the string efficiency of the arrangement with guard ring.


Course Outcome 6 (CO6):

- A single core lead sheathed cable has a diameter of 3 cm: the diameter of the cable being 9 cm. The cable is graded by using two dielectrics of relative permittivity 5 and 4 respectively with corresponding safe working stress of 30 kV/cm and 20 kV/cm. Calculate the radial thickness of each insulation and the safe working voltage of the cable.
- 2. A single core cable for 66kV, 3phase system as a conductor of 2cm diameter and sheath of inside diameter 5.3cm. It is required to have two intersheaths so that the


stress varies between the same maximum and minimum values in the three layers of dielectric. Find the positions of intersheaths, maximum and minimum stress and voltages on the intersheaths

Course Outcome 7 (CO7):


1. 3-phase distribution system is as shown in Figure 4. Power is supplied at A at 11kV(line voltage) and balanced loads of 50A per phase at 0.8 lagging power factor and 70A at 0.9 power factor are taken at B and C respectively. The impedance of the feeders are AB = $(5 + j9) \Omega$, BC = $(6 + j10) \Omega$ and CA = $(4 + j8) \Omega$. Calculate the voltage at B and C and the currents in each branch. Power factors are assumed with respect to voltage at A.

2. A 2 wire distributor 1400m long is loaded as shown in Fig.5. B is the midpoint. The Power factors at the two load points refer to the voltage at C. The impedance of each line is (0.15 + j 0.2) ohms. Calculate the sending end voltage and current. The voltage at C is 240V.

Concept Map

Syllabus

Generation - Generation of electrical power by conventional and non-conventional sources of energy- Schematic arrangement, operation, advantages and disadvantages-Thermal, Nuclear, Gas and Diesel - Hydro Electric, Wind, Solar, Geothermal and tidal.

Transmission line parameters - Inductance and Capacitance calculation - Single phase transmission lines - two wire system and composite conductors - Three phase transmission lines - unsymmetrical spacing, transposition of conductors, double circuit line — Bundled conductors - Skin and Proximity effects - Effect of earth on transmission line capacitance.

Performance of transmission lines – Performance characteristics of Short, Medium and Long transmission lines - nominal-T, π and rigorous methods – ABCD constants – Power Circle diagram, Ferranti Effect, Compensators, Effect of Corona.

Insulators and Cables - Overhead line insulators -Types of Insulators - Potential distribution over insulator string - Methods of Improving String Efficiency .

Underground cables - Construction and types - Single core and multi core cables - Capacitance, Insulation resistance, Electric stresses and Dielectric loss - Grading of Cables - Capacitance Grading and Inter-sheath Grading.

Distribution systems - AC Distribution Systems – Feeders, distributors and service mains-Radial and ring main systems - Calculation of voltage and current in distributors with concentrated and distributed loads -fed at both ends.

Learning Resources

- 1. C.L. Wadwa "Electrical Power system", New Age International-6th Edition 2010.
- 2. C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Publishers, Second Edition, 2006.
- 3. S.N. Singh, Electric Power Generation, Transmission and Distribution, Prentice Hall of India, ISBN (978-81-203-36508), Second edition 2008.
- 4. Chetan Singh Solanki, Renewable Energy Technologies, PHI Learning Private Limited, New Delhi, 5th Printing, 2013.
- 5. B.R.Gupta, "Power System Analysis and Design", S.Chand& Co. pvt.ltd., 2015 Edition.
- 6. H. Cotton and H. Barber Transmission and distribution of electrical energy BI, NewDelhi -1992.
- 7. S.L. Uppal Electrical power, Khanna Publishers, 1996.

- 8. Soni ML and Gupta PV A Textbook on Power Systems Engineering Dhanpath Rai 1st Edition-1998.
- 9. IS 12360:1988 Voltage Bands For Electrical Installations Including Preferred Voltages And Frequency
- 10. T.S.M. Rao Principles and practice of electric power transfer systems, 1994.
- 11. 141-1993 IEEE Recommended Practice for Electric Power Distribution for Industrial Plants.
- 12. http://nptel.ac.in/courses

Course	Contents	and	l ecture	Schedule
Course	COLLECTION	allu	Lecture	ochedule

Module No.	Topic	No. Hours	of	Course Outcome
1.0	Generation- Generation of electrical power by conventional and non-conventional sources of energy-Schematic arrangement, operation, advantages and disadvantages			
1.1	Thermal, Nuclear	2		CO1
1.2	Gas and Diesel	1		CO1
1.3	Hydro Electric, Wind	2		CO1
1.4	Solar, Geothermal and tidal.	2		CO1
2.0	Transmission line parameters - Inductance and Capacitance calculation			
2.1	Single phase transmission lines - two wire system and composite conductors	3		CO2
2.2	Three phase transmission lines - unsymmetrical spacing, transposition of conductors	3		CO2
2.3	Double circuit line, Bundled conductors	2		CO2
2.4	Skin and Proximity effects - Effect of earth on transmission line capacitance	1		CO2
3.0	Performance of transmission lines - Performance characteristics			
3.1	Short, Medium and Long transmission lines using nominal-T, π and rigorous methods	3		CO3
3.2	ABCD constants, Power Circle diagram	2		CO3
3.3	Ferranti Effect, Compensators	1		CO3
3.4	Effect of Corona	1		CO3
4.0	Insulators and Cables			
4.1	Overhead line insulators -Types of Insulators	1		CO4
4.2	Potential distribution over insulator string – Methods of Improving String Efficiency.	2		CO5
4.3	Underground cables - Construction and types - Single core and multi core cables.	2		CO4
4.4	Capacitance, Insulation resistance, Electric stresses and Dielectric loss	1		CO4
4.5	Grading of Cables - Capacitance Grading and Inter-	2		CO6

	sheath Grading		
5.0	Distribution systems - AC Distribution Systems		
5.1	Feeders, distributors and service mains- Radial and ring main systems	2	CO7
5.2	Calculation of voltage and current in distributors with concentrated loads and distributed loads, fed at two ends	3	CO7
	TOTAL	36	

Course Designers:

1.Prof. S.Sivakumar siva@tce.edu

2. Dr.N.Shanmuga Vadivoo nsveee@tce.edu

3.Dr.R.Rajan Prakash r_rajanprakash@tce.edu

18EE520	MICROCONTROLLERS	Category	L	Т	Р	Credit
		PC	3	0	0	3

Preamble

Microprocessors are the predecessors to microcontrollers and they are mainly used as CPU in the desktop computers and laptops nowadays and they are also used for measurement and control applications in the past few decades. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. Microcontroller is used as the main controller in most of the embedded systems nowadays. This course makes the students to be familiar with the architecture and programming of Microcontrollers. Introduction to Microprocessors and their evolution is also given. This course provides a detailed study of architecture and assembly language & embedded 'C' language programming of Intel 8051 and ATmega328p microcontroller and interfacing various peripherals with them.

Prerequisite

18EE340 - Digital Systems

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the evolution and architecture of microprocessors and microcontrollers.	15
CO2	Explain the architecture and the function of on-chip hardware units in 8051 microcontroller.	15
CO3	Develop 8051 Assembly Language programs for data manipulations and accessing on-chip hardware units.	15
CO4	Explain the architecture and hardware features of ATmega328p	15
CO5	Develop 8051 based embedded C programs for interfacing LED, Matrix Keyboard, LCD, DAC, ADC, 7 segment LED Display and Stepper/DC Motors.	25
CO6	Develop ATmega328p based embedded C programs for Capture/Compare/PWM generation and signal acquisition using on-chip ADC	15

^{***} Weightage depends on Bloom's Level, number of contact hours.

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	ain Level	CDIO Curricular Components			
#	Proficiency	Cognitive	Affective Psych		(X.Y.Z)		
	Scale			motor			
CO1	TPS2	Understand	Respond		1.2, ,3.2.3		
CO2	TPS2	Understand	Respond		1.2, 2.3.1, 2.3.2,3.2.3		
CO3	TPS3	Apply	Value		1.2, 2.1.1, 2.3.2 , 2.1.5,3.2.3		
CO4	TPS3	Understand	Respond		1.2, 2.3.1, 2.3.2,3.2.3		

CO5	TPS4	Apply	Value	1.2, 2.3.1, 2.3.2, ,3.2.3, 2.1.5
CO6	TPS2	Apply	Value	1.2,2.3.1, 2.3.2, ,3.2.3, 2.1.5

Map	ping v	vith P	rograi	mme (Outco	mes a	nd Pr	ogran	nme S	Specific	C Outco	omes		
Со	PO	РО	PO	PO	РО	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	М	L						М		М				М
CO 3	s	М	L					М		М				S
CO 4	М	L						М		М				М
CO 5	s	М	L					М		М				S
CO 6	s	М	L					М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain										
Cognitive		nuous ssment 1	Tests	Assign	nment	Terminal				
Levels	1	2	3	1	2	3	Examinati on			
Remember	40	20	20	-	-	_	20			
Understand	40	30	30	-	-	-	30			
Apply	20	50	50	100	100	100	50			
Analyse	0	0	0				0			
Evaluate	0	0	0				0			
Create	0	0	0				0			

Assessment Pattern: Psychomotor							
Psychomotor Skill	Miniproject /Assignment/Practical Component						
Perception							
Set							
Guided Response							
Mechanism							
Complex Overt Responses							
Adaptation							
Origination							

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

- 1. Compare microprocessors and microcontrollers.
- 2. Distinguish Harvard and Von Neuman architectures.

3. Give examples for RISC machines.

Course Outcome 2(CO2):

- 1. If a 12 MHz crystal is connected to 8051, how much is the time duration for one state and one machine cycle?
- 2. How to program the external interrupts of 8051 as falling edge or low level triggered interrupt?
- 3. Why external pull-up resistor is required for port-0 in 8051?

Course Outcome 3(CO3):

- 1. Write the 8051 ALP to find the largest byte in an array, stored in the external data memory from the address 2000H and store the result in the address 3000H. The array contains one hundred bytes of data.
- 2. Write 8051 ALP to convert the given 8-bit binary number into BCD number.
- 3. Write 8051 assembly language program to generate a square wave of 1 KHz using timer 0 of 8051. The crystal frequency is 12 MHz.

Course Outcome 4 (CO4):

- 1. List the on-chip hardware units available in ATmega328p microcontroller.
- 2. Explain the working of on-chip ADC module in ATmega328p.
- 3. Specify the function of CCP module in ATmega328p microcontroller.


Course Outcome 5 (CO5):

- 1. Interface an 2*16 LCD with 8051 and write embedded 'C' program to display the name of the Department and College in the middle portion of the LCD.
- 2. Interface an 8-bit ADC with 8051 and write embedded 'C' program to get 100 samples of input data each taken at a time interval of 100 micro seconds and store the result in external data memory from the address 2000H. The crystal frequency is 12 MHz.
- 3. Write 8051 based embedded C program to identify the key pressed in the matrix keyboard interfaced with 8051 and send the ASCII code of the key pressed in Port 0.

Course Outcome 6(CO6):

- 1. Develop an embedded C program to access on-chip ADC of ATmega328p and to convert the given analog signal to digital.
- 2. Configure the Capture unit of ATmega328p controller to capture the external event
- 3. Generate PWM signals using ATmega328p microcontroller to provide gate pulses of a single phase inverter.

Concept Map

Syllabus

Introduction: Introduction to Microprocessor and Microcontroller – Evolution – Architecture of Microprocessor -Von Neumann and Harvard architecture – CISC and RISC — Comparison of Microprocessor and Microcontroller – Overview of 8/16/32/64 bit Microprocessors and Microcontrollers – Applications of Microprocessors and Microcontrollers - Selection of Microcontroller for an application.

8051 Microcontroller: 8051 Architecture – Pin details- Timing Diagram - Memory - Parallel Ports - Counters/Timers – Interrupts - Serial port.

8051 Assembly Language Programming: Addressing modes, Instruction set of 8051, Basic Assembly language Programming – Arithmetic operations – Code conversions – Sorting – Look up tables – subroutines – Timer/Counter, Interrupt and serial port programming. Introduction to simulators.

ATmega328p microcontroller: Architecture- I/O Ports - On chip ADC, Capture/Compare/PWM Module - I²C - SPI - Watchdog timer - Addressing modes-Instruction set

Embedded 'C' Programming: Introduction to IDE – Embedded C Data types-Programming structure

8051 Interfacing with peripherals using Embedded 'C': LED - Matrix Keyboard – LCD – DAC – ADC – 7-segment LED Display – Stepper Motor/DC Motor.

ATmega328p based embedded C programs: Programs to access Capture/Compare/PWM generation - signal acquisition using on-chip ADC

Learning Resources

- 1. Muhammad Ali Mazidi, Janice Gillispie Mazidi, and Rolin D. McKinlay, The 8051 Microcontroller and Embedded Systems, (second edition), 2005 Pearson Education, Inc
- 2. Ajay V.Deshmukh, Microcontrollers- Theory and applications, Tata McGraw-Hill, publisher,2005.
- 3. N.Senthil kumar, M.Saravanan, S.Jeevanandhan, Microprocessors and Microcontrollers, Oxford university press, 2010.
- 4. P.S.Manoharan, P.S.Kannan, Microcontroller based system design, Scitech Publications Pvt. Ltd., Chennai, 2007.
- 5. Kenneth .J. Ayala, The 8051 Microcontroller, Architecture, Programming & Applications (third edition), Penram International, India (2004).
- 6. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P Datasheet.pdf
- 7. Rao B. Kanta, Embedded Systems, PHI Learning Pvt. Ltd., 2011.
- 8. https://nptel.ac.in/courses/108105102/ (Microprocessors and Microcontrollers)

Course Contents and Lecture Schedule								
Module	Topic	No.	of Course					
No.		Hours	Outcome					
1.	Introduction							
1.1	Introduction to Microprocessor and Microcontroller-	1	CO1					
	Evolution - Architecture of Microprocessor							
1.2	VonNeuman and Harvard architecture – CISC- RISC	1	CO1					
1.3	Comparison of Micro processor and Microcontroller	1	CO1					
1.4	Overview of 8/16/32/64 bit Microprocessors and	1	CO1					
	Microcontrollers							
1.5	Application of Microprocessors and Microcontrollers -	1	CO1					
	Selection of Microprocessors for an application							

2.	8051 Microcontroller		
2.1	8051 Architecture, Pin details	1	CO2
2.2	Timing diagram, Memory	1	CO2
2.3	Parallel Ports	1	CO2
2.4	Counters/Timers	1	CO2
2.5	Interrupts	1	CO2
2.6	Serial port	1	CO2
3.	8051 ALP Programming		
3.1	Addressing modes	1	CO3
3.2	Instruction set of 8051	2	CO3
3.3	Basic Assembly language Programming – Arithmetic operations	1	CO3
3.4	Code conversions - Sorting	1	CO3
3.5	Look up tables – subroutines – Timer/Counter, interrupt and serial port programming	1	CO3
3.6	Introduction to simulators	1	CO3
4.	ATmega328p microcontroller		
4.1	Architecture	1	CO4
4.2	I/O Ports - On chip ADC	1	CO4
4.3	Capture/Compare/PWM Module	1	CO4
4.4	I ² C – SPI – Watchdog timer	1	CO4
4.5	Addressing modes- Instruction set	1	CO4
5	Embedded 'C' Programming		
5.1	Introduction to IDE	1	CO5/CO6
5.2	Embedded C Data types-Programming structure	1	CO5/CO6
6	8051 Interfacing with peripherals using Embedded 'C'		
6.1	LED, Matrix Keyboard	2	CO5
6.2	Liquid Crystal Display	1	CO5
6.3	DAC	1	CO5
6.4	ADC	1	CO5
6.5	7 segment LED Display	1	CO5
6.6	Stepper Motor/DC Motor.	2	CO5
7	ATmega328p based embedded C programs		
7.1	Programs to access Capture/Compare/PWM generation	2	CO6
7.2	Signal acquisition using on-chip ADC	1	CO6
	Total	36	

Course Designers:

1.Dr.M.Saravananmseee@tce.edu2.Dr.P.S.Manoharanpsmeee@tce.edu3 Dr.D.Kavithadkavitha@tce.edu

18EE530	POWER ELECTRONICS	Category	L	Т	Р	Credit
IOLLOGO	P OWER ELECTRONICS	PC	3	0	0	3

Preamble

Power Electronics can be defined as the application of solid state electronics for the control, conversion and transmission of electric power. Power electronic circuits convert electrical energy in one form from source to the form required by load in an efficient and effective way. They find applications in industrial motor control, power supplies, vehicle propulsion systems, high voltage direct current (HVDC) systems, flexible AC transmissions (FACTs), heat controls and light controls.

Prerequisite

18EE250 Electronic Devices and Circuits 18EE230 Electric Circuit Analysis

10EE230 Electric Circuit Ariai

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the steady state characteristics and applications of Power diode, Power transistor, Power MOSFET, IGBT, SCR, Triac and Silicon carbide devices.	10
CO2	Design SCR triggering circuits, protection circuits and commutation circuits for the given requirements.	10
CO3	Design uncontrolled and controlled single phase and three phase rectifiers for the given specifications	20
CO4	Design single phase and three phase voltage source and current source inverters for the given specifications	20
CO5	Design step-up, step-down chopper, buck, boost and buck- boost switching regulator for the given specifications	20
CO6	Explain the SMPS topologies, single phase, three phase AC voltage controllers.	10
CO7	Analyze the performance of the given power converter and gate drive circuits using PLECS /PSPICE / MATLAB /PSIM software.	10

^{***} Weightage depends on Bloom's Level and number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dom	ain Level	CDIO	Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale				(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.2.13, 2.3.1	
CO2	TPS3	Apply	Value		1.2.13, 2.3.2	

CO3	TPS3	Apply	Value		1.2.13, 2.3.1,2.3.2
CO4	TPS3	Apply	Value		1.2.13, 2.3.1,2.3.2
CO5	TPS3	Apply	Value		1.2.13, 2.3.1,2.3.2
CO6	TPS2	Understand	Respond		1.2.13, 2.3.1
CO7	TPS4	Analyze	Organise	Complex	1.2.13, 2.1.2, 2.1.5,2.2.2
				Overt	,3.2.3,3.2.5
				Responses	

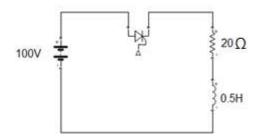
Map	Mapping with Programme Outcomes and Programme Specific Outcomes													
Co	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	М
CO 2	s	М	L					М		М			S	S
CO 3	s	М	L					М		М			S	S
CO 4	s	М	L					М		М			S	S
CO 5	s	М	L					М		М			S	S
CO 6	М	L						М		М			М	М
CO 7	s	S	М	L	М			М		М			S	S

S- Strong; M-Medium; L-Low
Assessment Pattern: Cognitive Domain

Continuous Cognitive Assessment Tests			Assig	ınment	Terminal		
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	0	0	0	20
Understand	40	40	40	0	0	0	40
Apply	40	40	40	50	50	50	40
Analyse	0	0	0	50	50	50	0
Evaluate	0	0	0	0	0	0	0
Create	0	0	0	0	0	0	0

Note: Simulation of power converters as per CO7 will be given as assignments.

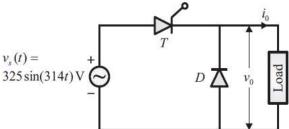
Assessment Pattern: Psychomotor						
Psychomotor Skill	Mini project /Assignment/Practical Component					
Perception	0					
Set	0					
Guided Response	0					
Mechanism	0					
Complex Overt Responses	0					
Adaptation	0					
Origination	0					


Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1)

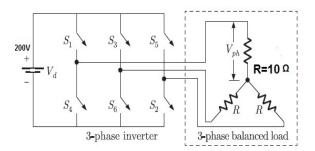
- 1. Draw the symbol of NPN Power Transistor.
- 2. Explain the transfer characteristics of MOSFET.
- 3. Compare On-line and Off-line UPS.

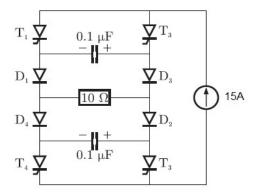
Course Outcome 2(CO2)


- 1. What is natural commutation?
- 2. In the given Chopper circuit, the latching current of SCR is 50mA,the firing pulse width is 50µs.Comment on the state of SCR whether it is turned-on.

- 3. Design a snubber circuit to meet the following data:
 - (i) Supply transformer rating is 5kVA with secondary voltage of 120V rms.
 - (ii)Switching frequency=400Hz.
 - (iii) Circuit inductance=100µH.
 - (iv)Peak transient voltage limit=200V.
 - (v)Damping factor=0.75.

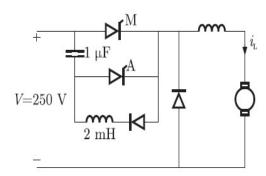
Course Outcome 3(CO3)


- 1. Write the applications of rectifier circuits.
 - 2. Find the firing angle of the SCR shown in figure to get an average output voltage of 70V with RL load having R= 10Ω and L=0.05H.Assume ideal devices.


3. A single phase full wave controlled rectifier is operated from 200V, 50Hz supply. The load is RL with R=100 Ω and the average output voltage is 50V. Assume continuous conduction mode: Determine (i) firing angle (ii) rms output voltage and current (iii) form factor (iv) ripple factor and (v) transformer utilization factor.

Course Outcome 4 (CO4)

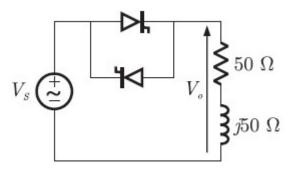
- 1. What are the various voltage control methods in inverter?
- 2. Find the rms value of load line voltage and the power consumed by the three phase load.



3. Calculate the maximum theoretical output frequency of the given CSI circuit with R load:

Course Outcome 5 (CO5)

- 1. What are the various voltage control methods in DC choppers?
- 2. A voltage commutated Chopper, shown in figure is operated at f=1kHz and the load current is constant at 10A.Find the following: (i) The minimum time for which the main SCR(M) should be on (ii)The average output voltage of the Chopper circuit.

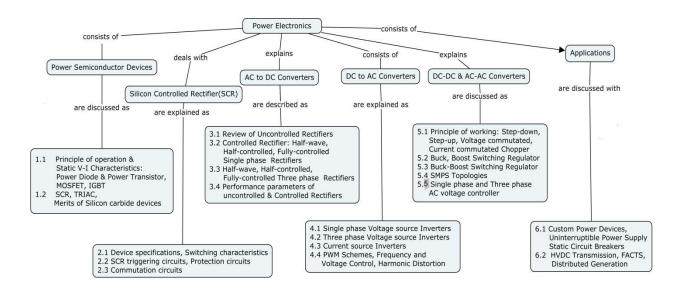


3. A buck-boost regulator has an input voltage, Vs=10V.The duty cycle k=0.25,the average load current, Ia=1A and the switching frequency is 25kHz.If L=150 μ H and C=220 μ F,calculate (i)the average output voltage, (ii)the ripple current of L, (iii)the ripple voltage of C, and (iv)the critical values of L & C.

Course Outcome 6(CO6)

1. Explain the different topologies of DC-DC power converter of SMPS.

2. In the given single phase AC voltage controller circuit, for what range of firing angle the output voltage is not controllable.



3. Discuss the operation of the bidirectional converter circuit that converts 50Hz, three phase AC to variable magnitude 50Hz, three phase AC.

Course Outcome 7(CO7)

- 1. Simulate 3-phase semi converter and analyse the performance parameters using PLECS /PSPICE software.
- 2. Design and simulate 1-phase voltage source inverter and current source inverter with RLE load and compare the performance using PSIM software.
- 3. Design suitable converters for wind energy conversion and analyze the performance using MATLAB software.

Concept Map

Syllabus

Power Semiconductor Devices

Principle of operation & static V-I Characteristics of power diode, power transistor, MOSFET, IGBT, SCR and TRIAC, merits of silicon carbide devices, **SCR**: Triggering circuits, protection circuits and commutation circuits.

AC to DC Converters

Review of uncontrolled rectifiers, Controlled Rectifiers: Half wave, half controlled, fully controlled single phase and three phase controlled rectifiers, performance parameters.

DC to AC Converters

Single phase and three phase voltage source inverter, current source inverter, frequency and voltage control, PWM schemes, harmonic distortion.

DC-DC & AC-AC Converters

Principle of working: Step-down, step-up, voltage commutated, current commutated chopper, switching regulators: buck, boost & buck-boost, SMPS topologies, single phase and three phase ac voltage controller.

Applications

Electric Drives, Custom power devices, uninterruptible power supply, HVDC transmission, FACTS, distributed generation.

Simulation of Power Converers

Performance analysis of the power converters and gate drive circuits using PLECS /PSPICE / MATLAB /PSIM software.

Learning Resources

- 1. Muhammad H.Rashid, Power Electronics Devices, Circuits & Applications, Fourth Edition, Pearson Education India Publication, New Delhi, 7th Impression, 2019.
- 2. M.D.Singh & K.B.Khanchandani, Power Electronics Tata Mc Graw Hill publishing company Ltd, New Delhi, 2008.
- 3. Ned Mohan, Tore Undeland & William Robbins, Power Electronics:Converters, Applications and Design-John Willey and sons, 3rd Edition, 2003.
- 4. P.S. Bimbhra, Power Electronics- Khanna Publishers, Sixth Edition, 2018.
- 5. John G.Kassakian, Martin F.Schlecht, George C.Verghese, Principles of Power Electronics, Pearson Education, 12th Impression, 2014.
- 6. Daniel W.Hart, Introduction to Power Electronics, First Edition, Prentice Hall International Inc.,1996.
- 7. L. Umanand, Power Electronics: Essentials and Applications- Wiley India, 2009.
- 8. Marty Brown, Power Sources and Supplies, ELSEVIER, 2008.
- 9. https://ocw.mit.edu/courses/electrical-engineering.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Hours	Outcome
1.	Power Semiconductor Devices		
1.1	Principle of operation & Static V-I Characteristics: Power Diode & Power Transistor, MOSFET, IGBT	2	CO1
1.2	SCR, TRIAC, Merits of Silicon carbide devices	2	CO1
1.3	Device specifications, Switching characteristics	2	CO1
1.4	SCR triggering circuits, Protection circuits	2	CO2
1.5	Commutation circuits	2	CO2
2.	AC to DC Converters		
2.1	Review of Uncontrolled Rectifiers	1	CO3
2.2	Controlled Rectifier: Half-wave, Half-controlled, Fully-controlled Single phase Rectifiers	2	CO3
2.3	Half-wave, Half-controlled, Fully-controlled Three phase Rectifiers	2	CO3
2.4	Performance parameters of uncontrolled& Controlled Rectifiers	2	CO3
3.	DC to AC Converters		
3.1	Single phase Voltage source Inverters	1	CO4
3.2	Three phase Voltage source Inverters	2	CO4

3.3	Current source Inverters	1	CO4
3.4	Frequency and Voltage Control, PWM Schemes	2	CO4
3.5	Harmonic Distortion	1	CO4
4.	DC-DC & AC-AC Converters		
4.1	Principle of working: Step-down, Step-up, Voltage commutated, Current commutated Chopper	2	CO5
4.2	Buck, Boost Switching Regulator	2	CO5
4.3	Buck-Boost Switching Regulator	1	CO5
4.4	SMPS Topologies	1	CO6
4.5	Single phase and Three phase AC voltage controller	2	CO6
5.	Applications		
5.1	Electric Drives, Custom Power Devices, Uninterruptible Power	1	CO1
	Supply		
5.2	HVDC Transmission, FACTS, Distributed Generation	1	CO1
5.3	Performance analysis of the power converters and gate drive	2	CO7
	circuits using PLECS /PSPICE / MATLAB /PSIM software		
	Total	36	

Course Designers:

- Prof. V.Suresh Kumar vskeee@tce.edu
 Dr. L.Jessi Sahaya Shanthi ljseee@tce.edu
- 3. Dr. S. Arockia Edwin Xavier saexeee@tce.edu

	18EE540	ACCOUNTING AND FINANCE
--	---------	------------------------

Category	L	Т	Р	Credit
HSS	3	ı	-	3

Engineering profession involves lots of decision making. The decisions may range from operation to non-operation. For taking decisions of these kinds, an engineer needs among other data about the organization routine operations and non-routine operations. Accounting is a science which provides all the data by recording, classifying, summarizing and interpreting the various transactions taking place in an organization and thereby helps an engineer in taking vital decisions in an effective manner. Finance is an allied but a separate field relying on accounting and enables engineers in taking useful financial and cost related decisions by providing well defined concepts, tools and techniques

Prerequisite

Nil

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Prepare financial statements of accounting, common size statements and comparative statements.	20
CO2	Perform cost sheet, depreciation and its applications in business.	15
CO3	Compute various types of budgets in an organization	15
CO4	Obtain break even analysis and activity based costing systems for a business applications	15
CO5	Compute working capital requirements and long term investment decisions.	20
CO6	Apply the appropriate sources of finance and mobilize the right quantum of finance and use them in most profitable investment avenues	15

^{***} Weightage depends on Bloom's Level, number of contact hours.

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level		el	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				
CO1	TPS3	Apply	Value		1.1,1.2,2.1.3, 2.1.4, 2.1.5, 2.3,
					2.4.3, 2.4.6, 2.4.7, 2.4.6
CO2	TPS3	Apply	Value		1.1, 1.2, 2.1.3, 2.1.5, 2.4.6,
					3.2.3, 3.2.4, 3.2.5, 3.2.6, 4.1.1,
					4.1.2
000	TDOO	A I	\		11 12 21 2 21 4 21 5
CO3	TPS3	Apply	Value		1.1, 1.2, 2.1.3, 2.1.4, 2.1.5,
					2.3.4, 2.4.6, 2.4.5, 2.4.7, 2.5.1,
					3.1.1, 3.1.2, 3.1.5, 3.2, 4.1.1,

				4.1.2
CO4	TPS3	Apply	Value	1.1,1.2, 2.3.3, 2.3.4, 2.4.6, 2.4.7,
				2.5.1, 3.2.3. 3.2.4, 4.1.1
CO5	TPS3	Apply	Value	1.1, 1.2, 2.1.4, 2.1.5, 2.4.6,
				2.4.7, 2.5.1, 3.1, 3.2, 4.1.1, 4.1.2
CO6	TPS3	Apply	Value	1.1, 1.2, 2.1.5, 2.3.1, 2.3.3,
				2.4.1, 2.4.3, 2.4.4, 2.4.6, 2.4.7,
				2.5.1, 2.5.3, 3.1.4, 3.2, 4.1.1,
				4.1, 4.2, 4.6.6

Map	Mapping with Programme Outcomes and Programme Specific Outcomes													
Co	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO						M	S	M	S	S	S	S	L	L
1														
CO						_	M	M	S	S	S	M	L	L
2														
CO						-	-	S	S	S	S	S	L	L
3														
CO						M	L	S	S	S	S	M	L	L
4														
CO						M	M	S	S	S	M	M	L	L
5														
CO						M	M	S	S	M	M	S	L	L
6														

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests			Assignm	Termi		
Levels	1	2	3	1	2	3	nal Exami nation
Remember	20	20	20	-	-	-	20
Understand	30	30	30	-	-	-	20
Apply	50	50	50	100	100	100	60
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor					
Davahamatar Skill	Mini municat/A anismunaut/Dunatical Campanaut				
Psychomotor Skill	Mini project/Assignment/Practical Component				

Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

- 1. Explain in detail about accounting concepts and conventions.
- 2. Prepare Trading Account, Profit and Loss Account and Balance Sheet from the following

S.NO	PARTICULARS	Debit balances (in	Credit balances(in
		Rs)	Rs)
1	Capital		300000
2	Bank	15000	
3	Plant and machinery	40000	
4	Land and building	60000	
5	Debtors	20000	
6	Creditors		40000
7	Cash	70000	
8	Purchases and sales	35000	50000
9	Purchase returns and	7000	4000
	sales returns		
10	Bills receivable	3000	
11	Bills payable		5000
12	Wages	40000	
13	Salaries	30000	
14	Discount		4000
15	Stock on Jan 2017	10000	
16	Furniture	7000	
17	Carriage inwards	5000	
18	Carriage outwards	6000	
19	Advertising	10000	
20	Travelling expense	3000	
21	Loans		60000
22	Vans	100000	
23	Telephone	2000	
_	Total	463000	463000

3. From the following particulars, prepare comparative balance sheet of Malar Ltd as on 31st March 2017 and 31st March 2018.

Particulars	31st March 2017	31st March 2018
I EQUITY AND LIABILITIES		

1. Shareholders' fund		
a) Share capital		
b) Reserves and surplus	2,00,000	2,50,000
2. Non-current liabilities	50,000	50,000
Long-term borrowings		
3. Current liabilities	30,000	60,000
Trade payables		
	20,000	60,000
Total	3,00,000	4,20,000
II ASSETS		
1. Non-current assets		
a) Fixed assets	1,00,000	1,50,000
b) Non - current investments	50,000	75,000
2. Current assets		
a)Inventories	75,000	1,50,000
b) Cash and cash equivalents	75,000	45,000
Total	3,00,000	4,20,000

Course Outcome 2(CO2):

1. Classify the cost according to function.

2. Prepare cost sheet in the book of Vimi from the following particulars.

Opening stock: - Raw material = Rs 5,000

Finished goods = Rs 4,000

Closing stock: Raw material = Rs 4,000

Finished goods = Rs 5,000

Raw material purchased = Rs 50,000 Wages paid to laboures = Rs 20,000 Chargeable expenses = Rs 2,000

Rent and Taxes = Rs 7,400

Power = Rs 3,000

Experimental expenses = Rs 600

Sale of wastage of material = Rs 200

Office management salary = Rs 4,000

Office printing & stationery = Rs 200
Salaries to salesman = Rs 2,000
Commission to traveling agents = Rs 1,000
Sales = Rs 1,00,000

Course Outcome 3(CO3):

- 1. Classify the budget based on function.
- 2. Explain the advantages and applications of budgetary control.

3. From the forecast of income and expenditure prepare a cash budget for the months from April to June 2019.

Month	Sales	Purchases	Wages	Office	Selling
	Rs	Rs	Rs	expenses	expenses
				Rs	Rs
Feb	70,000	45,000	4,500	2,700	1,800
Mar	72,000	43,000	4,700	3,000	2,000
Apr	75,000	44,000	4,900	2,900	2,200
May	71,000	40,000	5,000	3,000	2,100
Jun	70,000	42,000	5,000	2,800	1,900

- o Plant worth Rs25, 000 purchased in June. 40% payable immediately and the remaining in two equal instalments in subsequent months.
- o Advance tax payable in April Rs 4500
- Period of credit allowed
 - By suppliers 2 months
 - To customer 1 month
- Dividend payable Rs 7000 in June
- Delay in payment of wages and office expenses 1 month and selling expenses
 1 month. Expected cash balance on 1st April Rs 30,000

Machinery expected to sell on May is Rs 20,000

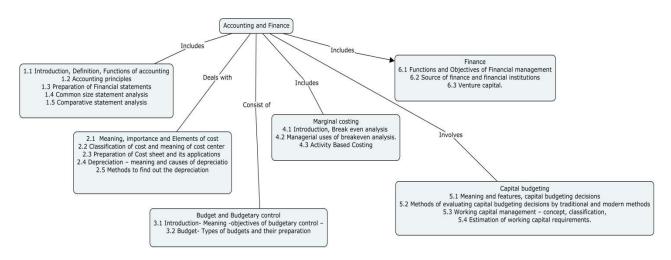
Course Outcome 4 (CO4):

- 1. From the following information calculate the Breakeven point in terms of units and breakeven point in terms of sales. Sales....Rs.10,000, Variable costs Rs.6,000, fixed costs Rs.2000:profit Rs.2,000;No. Ofunits produced 1,000 units.
- 2. Calculate the breakeven point and margin of safety from the following information Fixed cost ...Rs.10,000, sales in Rs.25,000, selling price per unit Rs.30; variable cost per unit Rs.10

Course Outcome 5(CO5):

- 1. Classify capital budgeting decisions.
- From the following information extracted from the books of a manufacturing company, compute the operating cycle in days and the amount of working capital required:
 Period Covered
 365 days

Average period of credit allowed by suppliers	16 days
Average Total of Debtors Outstanding	480
Raw Material Consumption	4,400
Total Production Cost	10,000
Total Cost of Sales	10,500
Sales for the year	16,000
Value of Average Stock maintained:	
Raw Material	320
Work-in-progress	350
Finished Goods	260


3. From the following data of a project, Calculate IRR and suggest whether the project is to be undertaken or not if the cut off rate is 9%.

Cash Out	1,50,000	
	Year 1	41,000
Cook Inflow(Do)	Year 2	50,000
Cash Inflow(Rs.)	Year 3	50,000
	Year 4	42,000

Course Outcome 6(CO6):

- 1. List the sources of finance.
- 2. Suggest suitable sources of finance to start a business with a capital of 60 crores.

ConceptMap

Syllabus

Accounting Introduction definition, functions of accounting, Accounting principles-. Preparation of financial statements and their analysis with common size and comparative statements.

Cost Accounting - Meaning and importance -Elements of cost- classification of cost- Cost centre, Preparation of cost sheet and its applications .Depreciation – meaning and causes of depreciation, Methods to find out the depreciation

Budget and Budgetary control- Introduction-Meaning -objectives of budgetary control – Budget-Types of budgets and their preparation.

Marginal costing- Introduction, Break even analysis –Managerial of breakeven analysis. **Activity based Costing**

Capital budgeting- Meaning and features, capital budgeting decisions, Methods of evaluating capital budgeting decisions by traditional and modern methods. Working capital management - concept, classification, Estimation of working capital requirements.

Finance: Functions, Objectives of financial management and Source of finance and financial institutions, Venture capital.

Learning Resources

- 1. M.C.Shukla, T.S.Grewal, "AdvancedAccounts-Volume-I,2010 Reprint, S. Chand & company Ltd., 2010.
- Prasanna Chandra, "Financial Management-Theory and practice" seventh Reprint, Tata McGraw-Hill publishing company Limited, 2010.
- 3. P.S.BoopathiManickam "Financial and Management Accounting" PSG publications 2009
- 4. Don R. Hansen and Maryanne M. Mowen "Cost Management: Accounting and Control, Fifth Edition" Thomson, 2006.
- 5. Michael C . Ehrhardt and Eugene F . Brigham, "Financial Management: Theory and Practice -thirteenth edition" South-Western cengage learning, 2011
- 6. Pandey, "Financial Management", Vikas Publishing House Pvt. Ltd., 2007
- 7. Paramasivan.C, Subramanian.T, "Financial management" New Age international Publishers, 2014.
- 8. https://nptel.ac.in/courses/110/106/110106135/: Decision making using financial accounting, Prof. G Arun Kumar, IIT Madras
- 9. https://nptel.ac.in/courses/110/101/110101131/ : Financial Accounting, Dr. Varadraj Bapat, IIT Bombay.
- 10. https://nptel.ac.in/courses/110/107/110107127/: Management Accounting, Prof. Anil K. Sharma, IIT Roorkee.
- 11. https://nptel.ac.in/courses/105104178/: Introduction to Accounting and Finance for Civil Engineers, Dr. Sudhir Misra, IIT Kanpur.
- 12. https://www.youtube.com/watch?v=P9JIBbZas3w: Introduction to accounting, Dr.S.Vaidhyasubramanian, Adjunct professor, Sastra University.

Course Contents and Lecture Schedule

Module	Topic	No. of	Cos
No		Lectures	
1	Accounting		
1.1	Introduction, Definition, Functions of accounting	1	
1.2	Accounting principles	1	
1.3	Preparation of Financial statements	3	CO1
1.4	Common size statement analysis	1	
1.5	Comparative statement analysis	1	
2	Cost Accounting		
2.1	Meaning, importance and Elements of cost	1	CO2

	Total	36 hrs		
6.3	Venture capital.	1		
6.2	Source of finance and financial institutions	3	_	
6.1	Function sand Objectives of Financial management	1 CO6		
6	Finance		_	
5.4	Estimation of working capital requirements.	1		
5.3	Working capital management – concept, classification,	1	_	
	Methods of evaluating capital budgeting decisions by traditional and modern methods	4	CO5	
5.1	Meaning and features, capital budgeting decisions	4	_	
5.1	1 0 0	1	\dashv	
5	Capital budgeting			
4.2	Activity Based Costing	2	\dashv	
4.1	Managerial uses of breakeven analysis.	1	- 504	
4.1	Introduction, Break even analysis	2	CO4	
4	Marginal costing	-		
3.2	Budget- Types of budgets and their preparation	4		
3.1	Introduction- Meaning -objectives of budgetary control –	1		
3	Budget and Budgetary control		CO3	
2.4	Methods to find out the depreciation	2	\dashv	
2.4	Depreciation – meaning and causes of depreciation	1	-	
2.3	Preparation of Cost sheet and its applications	3	\dashv	
2.2	classification of cost and meaning of Cost centre,	1		

Course Designers:

Mr.B.Brucelee
 Dr. R.Sivasankaran
 Mr.S Rajkumar
 bbmech@tce.edu
 rssmech@tce.edu
 srmech@tce.edu

18EE570	MICROCONTROLLERS LAB	Category	L	Т	Р	Credit
1000070	WICKOCONTROLLERS LAB	PC	0	0	2	1

Microcontroller is used as the main controller in most of the embedded systems nowadays. This course makes the students to be familiar with the assembly language and Embedded 'C' language programming of 8051 and ATmega328P microcontroller for interfacing various peripherals and also performing them through simulation using software tools.

Prerequisite

18EE340-Digital Systems

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyze 8051 microcontroller based assembly language programs and embedded 'C' programs to implement basic operations by software tools.	10
CO2	Analyze 8051/ ATmega328P embedded 'C' programs for accessing on-chip hardware units such as timer/counter, interrupts and serial communication.	15
CO3	Analyze 8051/ ATmega328P microcontroller based embedded 'C' programs for Key board and display interface.	15
CO4	Analyze 8051/ ATmega328P based embedded 'C' programs for ADC and DAC interfacing and Motor control,	15
CO5	Analyze 8051/ ATmega328P microcontroller based embedded 'C' programs to implement the given application through simulation by software tools.	20
CO6	Develop 8051/ ATmega328P microcontroller based system for real world applications.	25

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

	oo mapping min obio cantoaram ramonork							
CO	TCE	Learning Domain Level			CDIO Curricular Components			
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)			
	Scale							
CO1	TPS4	Analyze	Organise	Complex	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,			
				Overt	2.4.3, 2.4.7, 3.1.1			
				Responses				
CO2	TPS4	Analyze	Organise	Complex	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,			

				Overt	2.4.3, 2.4.7, 3.1.1
				Responses	
CO3	TPS4	Analyze	Organise	Complex	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,
				Overt	2.4.3, 2.4.7, 3.1.1
				Responses	
CO4	TPS4	Analyze	Organise	Complex	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,
				Overt	2.4.3, 2.4.7, 3.1.1
				Responses	
CO5	TPS4	Analyze	Organise	Complex	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,
				Overt	2.4.3, 2.4.7, 3.1.1
				Responses	
CO6	TPS5	Evaluate	Organise	Adaptation	1.2.12, 2.1.1, 2.1.5,2.2.2, 2.4.2,
					2.4.3, 2.4.7, 3.1.1

Mapping with Programme Outcomes and Programme Specific Outcomes PO PO Со PO PO PO РО PO1 P01 PO1 PSO PSO PO PO PO 1 2 3 4 5 6 7 8 9 0 1 2 2 s 1 CO S Μ L Μ Μ S 1 CO S Μ L Μ Μ S CO S L Μ Μ Μ S CO S L S M Μ M 4 CO S S S S M L M Μ CO S S Μ L S Μ Μ S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand		
Apply	45	45
Analyse	30	30
Evaluate		
Create		

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Practical Component/Observation
Perception	
Set	
Guided Response	
Mechanism	25
Complex Overt Responses	
Adaptation	

Origination

CO5 & CO6 are evaluated through mini project separately for 20 marks out of 50 marks accounted for continuous assessment.

List of Experiments/Activities with CO Mapping

List of Experiments:

Module - 1 (CO1)

- Use of software simulation tools
- > Evaluation of arithmetic expressions

Module -2 (CO2)

- Timer/Counter applications with and without interrupts: (i) square wave generation (ii) Frequency measurement
- > Serial communication (I²C, UART) and Parallel communication.

Module - 3 (CO3 &CO4)

- Control of illumination of LED string / Traffic light
- Keyboard and Seven segment LED interfacing
- > ADC and DAC interfacing
- Speed control of DC motor / Stepper motor

Module - 4 (Applications/Product) (CO5 & CO6)

Automatic Toll gate

Smart Energy meter

PWM generator

Smart Voltmeter/ Power meter /Power factor meter

IoT applications such as Smart grid, Smart city, Agriculture, Health care, Security applications

Learning Resources

- 1. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher,2005.
- 2. The 8051 Microcontroller and Embedded Systems, (second edition). By Muhammad Ali Mazidi, Janice Gillispie Mazidi, and Rolin D. McKinlay © 2005 Pearson Education, Inc
- 3. N.Senthil kumar, M.Saravanan, S.Jeevanandhan, "Microprocessors and Microcontrollers", Oxford university press, 2010.
- 4. P.S.Manoharan, P.S.Kannan, "Microcontroller based system design", Scitech Publications Pvt. Ltd., Chennai, 2007.
- 5. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
- 6. https://nptel.ac.in/courses/108105102/ (Microprocessors and Microcontrollers)
- 7. UNIVERSAL EMBEDDED TRAINER (VUET-REV0) Manual

Course Designers:

1.	Dr.M.Saravanan	mseee@tce.edu
2.	Dr.L.Jessi Sahaya Shanthi	ljseee@tce.edu
3.	Dr.P.S.Manoharan	psmeee@tce.edu
4.	Dr.D.Kavitha	dkavitha@tce.edu

18EE580	CONTROL AND AUTOMATION LAB	Category	L	Т	Р	Credit
102200		PC	0	0	2	1

Control and Automation systems are backbone of modern day industries. Exposure to computer based design and practical implementation of control and automation systems are mandate for electrical engineering students. This course is framed in such a way to introduce computer aided analysis & design of control systems, implementation of designed controller in real world system. Exposure to PLC based automation system design and implementation for sequential processes is also provided.

Prerequisite

18EE440 Control Systems

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyze time and frequency domain characteristics of the given system using simulation tools	20
CO2	Analyze the effect of cascade compensators on the closed performance of the given system using simulation tools	20
CO3	Analyze the performance of LabVIEW based PID control system for the given specifications	10
CO4	Analyze the performance of <i>the</i> Ziegler Nichols and Cohen-Coon methods based PID controller for the given closed loop PC based system	10
CO5	Develop a PLC based software to perform the given sequential tasks experimentally	30
CO6	Analyze the performance of the discrete-time PID controller implemented using micro controller for controlling the servo system	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

Ī	CO	TCE	Lea	rning Doma	in Level	CDIO Curricular Components
	#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
		Scale			-	

CO1	TPS4	Analyze	Organize	Complex Overt Responses	2.1.1, 2.1.2, 2.1.3, 2.2.3
CO2	TPS4	Analyze	Organize	Complex Overt Responses	2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.3.
CO3	TPS3	Apply	Value	Mechanism	2.1.1, 2.1.2, 2.1.3
CO4	TPS3	Apply	Value	Mechanism	2.1.1, 2.1.2, 2.1.3, 2.1.4
CO5	TPS3	Apply	Value	Mechanism	2.1.1, 2.1.4, 2.1.5, 4.5.3,
CO6	TPS3	Apply	Value	Mechanism	2.1.1, 2.1.2, 2.1.4

Map	Mapping with Programme Outcomes and Programme Specific Outcomes													
Со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	S	М	L	М			М		М			S	S
CO 2	S	S	М	L	М			М		М			S	S
CO 3	S	М	L		М			М		М			S	S
CO 4	S	М	L		М			М		М			Ø	S
CO 5	S	М	L		М			М		М			S	S
CO 6	S	М	L		М			М		М			Ø	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain						
Cognitive Levels	Model Examination	Terminal Examination				
Remember	-					
Understand	-					
Apply	50	50				
Analyse	40	40				
Evaluate						
Create						

Assessment Pattern: Psychomotor							
Psychomotor Skill	Miniproject /Practical Component/Observation						
Perception							
Set							
Guided Response							
Mechanism	10						
Complex Overt Responses							
Adaptation							
Origination							

List of Experiments/Activities with CO Mapping

CO1:

- Time response Analysis using MATLAB
- Frequency response Analysis using MATLAB

CO2:

- Compensator Design using MATLAB
- Design and implementation of compensator closed loop control of Quanser Servo mechanism

CO3

• Development of LabVIEW based control system for tank level control process

CO4

Tuning of PID controllers using MATLAB

CO5:

- Study of PLC modules and I/O connection
- Sequential control of processes using Ladder logics and PLC
 - o Elevator Control Systems
 - Dozing pump control system
- Hardwired and PLC based start delta starter
- PLC based control of Batch process

CO6:

- Discrete PID control of servo mechanism Simulation
- Discrete PID control of Servo mechanism Practical implementation

Learning Resources

- 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age InternationalPublishers, 2017.
- 2. Richard C.Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009.
- 3. MATLAB based control system analysis: http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
- 4. M. Gopal, Digital Control and State Variable Methods, Tata McGraw Hill Publication
- 5. Limited, 2008
- 6. Frank D Petruzella, Programmable logic controllers, Third Edition, Tata McGraw-Hill, 2010
- 7. Logix Pro: PLC Simulator: http://www.thelearningpit.com/lp/logixpro.html

Course designers

- 1. Prof.S.Sivakumar siva@tce.edu
- 2. Dr.V.Prakash vpeee@tce.edu
- 3. Mr.M.Varatharajarn varatharajan@tce.edu

18EE610	POWER SYSTEM ANALYSIS	Category	L	Т	Р	Credit
IOLLOIO	TOWER STOTEM ANALTSIS	PC	3	0	0	3

Mathematical modeling and solutions on digital computers constitute an extremely viable approach to system analysis and planning studies for a modern-day power system with its large size, complex and integrated nature. A stage has, therefore, been reached where an under-graduate must be trained in the latest techniques of analysis of large scale power systems. This course has been designed to fulfill this need by integrating the basic principles of power system analysis illustrated through a simplest system structure with analysis techniques. This course provides an exposure of representation of power system, formulation of network matrices, power flow analysis, symmetrical fault analysis, and symmetrical component method of unsymmetrical fault analysis and stability studies.

Prerequisite

- 18EE230: Electric Circuit Analysis
- 18EE420: AC Machines

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Develop a mathematical model of a power system under	20
	steady state operating condition using single line diagram and per unit notations.	
CO2	Apply direct inspection and singular transformation methods to determine Y-bus matrix of the given system.	20
CO3	Describe the concept of load flow problem formulation and the various numerical methods of solution.	20
CO4	Calculate the fault current for various types of symmetrical faults on the given power system.	10
CO5	Calculate the fault current for various types of unsymmetrical faults on the given power system.	10
CO6	Explain the role of swing equation and equal area criterion in stability studies	20

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

00 III.	Co mapping with object our round in Francisco in									
CO	TCE	Learning Dor	main Level	CDIO Curricular						
#	Proficiency	Cognitive	Affective	Psychomotor	Components					
	Scale				(X.Y.Z)					
CO1	TPS3	Apply	Value		1.2, 2.1.1, 2.1.5, 2.3.1,					
					3.2.3					
CO2	TPS3	Apply	Value		1.2, 2.1.1, 2.1.2,2.1.5,					
					3.2.3					
CO3	TPS2	Understand	Respond		1.2, 2.3.1, 3.2.3					
CO4	TPS3	Apply	Value		1.2, 2.1.1,2.1.5, 3.2.3					
CO5	TPS3	Apply	Value		1.2, 2.1.1, 2.1.5, 3.2.3					

18ES590	SYSTEM THINKING
	1

Category	L	Т	Р	Credit
ES	1	-	2	2

Systems thinking is the integrated paradigm for systems science and system approaches to practice. It is concerned with understanding or intervening in problem situations, based on the principles and concepts of the system model. It can help to provide a common language and an intellectual foundation and make practical system concepts, principles, patterns and tools accessible to systems engineering. System thinking considers the similarities between systems from different domains in terms of a set of common systems concepts, principles, and patterns. The scope of systems thinking is a starting point for dealing with real-world situations using a set of related systems concept. The system thinking is viewed as both a set of founding ideas for the development of systems theories and practices and also as a pervasive way of thinking need by those developing and applying them. This systems approach is a way of tackling real-world problems and making use of the concepts, principle, patterns of systems thinking to enable the systems to be engineered and used.

Prerequisite

Nil

Course Outcomes

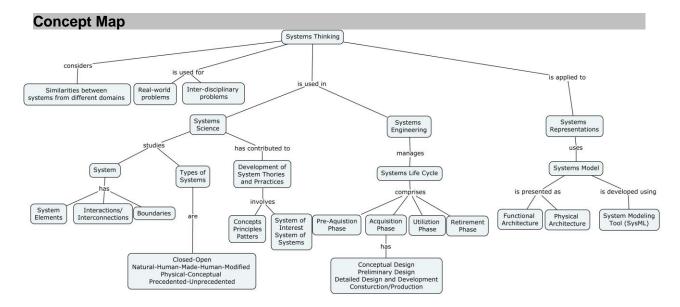
On the successful completion of the course students will be able to

CO	Course Outcome Statement	Weightage
Number		in %
CO1	Explain the concepts of systems thinking, System engineering	10
	and Systems Life Cycle	
CO2	Identify system elements, interactions, boundary and	10
	environment for the given system descriptions	
CO3	Develop a functional architecture with appropriate primary	15
	function(s) and sub-functions of the identified system	
CO4	Develop a physical architecture with appropriate sub-systems	15
	and components of the identified system	
CO5	Prepare a system requirement specification review documents	20
	for the various stages of acquisition phase of the identified	
	system	
CO6	Develop a system model with logical and physical architecture	30
	using system modelling tool like SysML	

CO Mapping with CDIO Curriculum Framework

CO	TCE	Lea	rning Domain	Level	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale	_		-	
CO1	TPS2	Understand	Respond	-	1.1, 2.3.1, 2.3.2
CO2	TPS3	Apply	Value	-	1.1, 2.1.1, 2.3.1,2.3.2, 2.3.3,
					2.3.4, 2.4.4, 4.3.1,
CO3	TPS3	Apply	Value	Mechanism	1.1, 2.1.1, 2.3.1,2.3.2, 2.3.3,
					2.3.4, 2.4.4, 3.1.2, 3.2.3, 3.2.4,
					3.2.5, 3.2.6, 4.3.1, 4.3.2, 4.3.3,
					4.4.5, 4.5.1
CO4	TPS3	Apply	Value	Mechanism	1.1, 2.1.1, 2.3.1,2.3.2, 2.3.3,
					2.3.4, 2.4.4, 3.1.2, 3.2.3, 3.2.4,
					3.2.5, 3.2.6, 4.3.1, 4.3.2, 4.3.3,
					4.4.5, 4.5.1
CO5	TPS3	Apply	Value	Mechanism	1.1, 2.1.1, 2.3.1,2.3.2, 2.3.3,

CO	TCE	Lea	rning Domain	Level	CDIO Curricular Components			
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)			
	Scale							
					2.3.4, 2.4.4, 3.1.2, 3.2.3, 3.2.4,			
					3.2.5, 3.2.6, 4.3.1, 4.3.2, 4.3.3,			
					4.4.5, 4.5.1			
CO6	TPS3	Apply	Value	Mechanism	1.1, 2.1.1, 2.3.1,2.3.2, 2.3.3,			
					2.3.4, 2.4.4, 3.1.2, 3.2.3, 3.2.4,			
					3.2.5, 3.2.6, 4.3.1, 4.3.2, 4.3.3,			
					4.4.5, 4.5.1			


Mappin	Mapping with Programme Outcomes and Programme Specific Outcomes													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	М	L	-	-	-	-	-	-	-	-	-	-		
CO2	S	М	L	-	-	L	L	L	L	L	-	М		
CO3	S	М	L	-	-	М	М	М	L	М	М	S		
CO4	S	М	L	-	-	М	М	М	L	М	М	S		
CO5	S	M	L	-	-	M	М	М	L	М	М	S		
CO6	S	М	Ĺ	-	S	М	М	М	Ĺ	М	М	S		

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain											
Cognitive Levels	Continuous Assessment Test -2										
Remember	20										
Understand	40										
Apply	40										
Analyse	•										
Evaluate	-										
Create	-										

Phases	Deliverables	Marks	Course Outcomes								
Continuous Assessment											
Continuous Assessment Test-1		10	CO1 and CO2								
Review 1 – Functional & Physical Architecture and System Requirement Specification	Technical Report	25	CO3, CO4 and CO5								
Review 2 – Systems Modeling	Technical Report	15	CO6								
En	d-Semester Examination	on									
Demonstration	Virtual Prototype with simulation	60	CO1, CO2, CO3, CO4 CO5 and								
Poster Presentation	Poster	40	CO6								

- Reports are to be submitted at each review. The report and presentation will be evaluated based on Rubrics.
- Demonstration of Virtual Prototype with simulation and Poster presentation will be evaluated by two faculty members nominated by their respective Head of the Department.

Syllabus

- **1.0 Systems Fundamentals:** System Definition, System Elements, Interactions, System Boundary, Types of Systems: Closed-Open, Natural-Human-Made-Human-Modified, Physical-Conceptual and Precedented-Unprecedented. Systems science Systems approaches. Systems Thinking: Concepts, principles and pattens. System of Interest Systems of System. Systems Engineering: Product, Service, Enterprise. System Life Cycle: Pre-acquisition phase, Acquisition Phase, Utilization Phase and Retirement Phase.
- **2.0 Acquisition Phase:** Conceptual Design: Business needs and requirements, Stakeholder needs and requirements, System Requirement Specification, Functional Base Line, System Requirement Review Functional Architecture. Preliminary Design: Configuration items, Allocated Baseline, Preliminary Design Review Physical Architecture. Detailed Design and Development: System Modeling, Product Base Line, Critical Design Review. Construction/Production: Formal Qualification Review, Acceptance Test and Evaluation.
- **3.0 Systems Modeling:** System Model Types of models System Modeling Concepts Modeling Standards. System Architecture: Logical Architecture Model Physical Architecture Model. Systems Life Cycle Process Model: Vee model.

Learning Resources

- A Guide to Guide to the Systems Engineering Body of Knowledge (SEBoK), version 2.2, INCOSE Systems Engineering Research Center and IEEE Computer Society, Released 31 October 2019 – https://www.sebokwiki.org/w/images/sebokwikifarm!w/8/8b/SEBoK v2.1.pdf
- 2. Systems Engineering Handbook, A Guide for Systems Life Cycle Processes and Activities, 4th Edition, INCOSE-TP-2003-002-04, 2015.
- 3. R. Ian Faulconbridge, Michael Ryan, "Systems Engineering Practice", Argos Argos Press, 2014.
- 4. Jon Holt and Simon Perry, "SysML for Systems Engineering", The Institution of Engineering and Technology, London, United Kingdom, 2008.
- 5. Sanford Friedenthal, Alan Moore and Rick Steiner, "A Practical Guide To SysML: The Systems Modeling Language, Third edition, Morgan Kaufmann, an imprint of Elsevier, 2015
- Coursera course on Introduction to Systems Engineering R. Ian Faulconbridge, Michael Ryan of The University of New South Wales, Sydney.
- 7. NPTEL Course: Systems Engineering Theory and Practice IIT Kanpur Prof. Deepu Philip (Last offered in 2019) https://nptel.ac.in/courses/110/104/110104074/

Course Contents and Lecture Schedule

Module	Topic	No. o	f Hours	Course
No.		In-Class	Hands-on	Outcome
1.	Systems Fundamentals: System - Definition, System Elements, Interactions, System Boundary	1	-	CO1
1.1	Types of Systems: Closed-Open, Natural-Human-Made-Human-Modified, Physical-Conceptual and Precedented-Unprecedented.	1	2	CO1
1.2	Systems science - Systems approaches.	1	ı	CO1
1.3	Systems Thinking: Concepts, principles and pattens.	1	-	CO1
1.4	System of Interest - Systems of System. Systems Engineering: Product, Service, Enterprise System Life Cycle: Pre-acquisition phase, Acquisition Phase, Utilization Phase and Retirement Phase.	2	2	CO2
2.	Acquisition Phase			
2.1	Conceptual Design: Business needs and requirements, Stakeholder needs and requirements, System Requirement Specification, Functional Base Line, System Requirement Review – Functional Architecture.	1	4	CO3
2.2	Preliminary Design: Configuration items, Allocated Baseline, Preliminary Design Review – Physical Architecture.	1	4	CO3
2.3	Detailed Design and Development: System Modeling, Product Base Line, Critical Design Review.	1	4	CO4
2.4	Construction/Production: Formal Qualification Review, Acceptance Test and Evaluation.	1	4	CO5
3.	Systems Modeling			
3.1	System Model - Types of models - System Modeling Concepts - Modeling Standards.	1	2	CO6
3.2	System Architecture: Logical Architecture Model – Physical Architecture Model.	1	4	CO6
3.3	Systems Life Cycle Process Model: Vee model.	1	2	CO6
	Total	14	28	

Course Designers:

Dr.S.J.Thiruvengadam
 Dr.S.Saravana Perumaal
 Dr.C.Jeyamala
 sjtece@tce.edu
 sspmech@tce.edu
 jeyamala@tce.edu

18CHAC0

ESSENCE OF INDIAN KNOWLEDGE

Category	L	Т	Р	Credit
AC	2	0	0	0

Preamble

On the successful completion of the course, the students will be able to explain the concept of Indian Traditional Knowledge along with Indian Modern Knowledge. Traditional Knowledge Systems or Indigenous Knowledge Systems are a body of knowledge, which is very ancient and deep rooted. They have their origins in the remote past. Their systematisation and canonisation gave rise to the elite (the Greater Tradition) science. The nature of Traditional Knowledge System is diverse. It covers, among other things, literary, artistic and scientific works; songs, dances, medical treatments and practices; manufacturing and industry; and agricultural technologies and techniques. There is a dramatically growing national and international interest in incorporating Traditional Knowledge Systems, including Traditional Ecological Knowledge, into truly participatory approaches to development.

Course Outcome:

On the successful completion of the course students will be able to

011 1110	bedeederal completion of the bedree stadents will be able to	
CO1	Explain the concept of Traditional Knowledge and Modern knowledge	Understand
	of India.	
CO2	Explain the need and importance of protecting Traditional Knowledge,	Understand
	Knowledge sharing, and Intellectual property rights over Traditional	
	Knowledge.	
CO3	Explain about the use of Traditional Knowledge to meet the basic	Understand
	needs of human being.	
CO4	Explain the rich biodiversity materials and knowledge preserved for	Understand
	practicing traditional lifestyle.	
CO5	Explain the use of Traditional Knowledge in Manufacturing and	Understand
	Industry.	
CO6	Explain about the cultural expression and modern applications of	Understand
	Traditional Knowledge	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	S	М	M	М	M	-	L	M	-	M
CO2	М	L	-	-	-	S	М	M	М	M	-	L	M	-	M
CO3	М	L	-	-	-	S	М	M	М	М	-	L	М	-	M
CO4	М	L	-	-	-	S	М	М	М	M	-	L	M	-	М
CO5	M	L	-	-	-	S	М	M	M	M	-	L	M	-	M
CO6	М	L	-	-	-	S	М	М	М	М	-	L	М	-	M

S- Strong; M-Medium; L-Low

Syllabus

Traditional and Modern Knowledge: Two Worlds of Knowledge - Phase of Explorers, Sir Arthur Cotton and Irrigation, Smallpox Vaccination, Late Nineteenth Century, Voelcker, Howard and Agriculture, Havell and Indian Art; Indians at the Encounter - Gaekwad of Baroda and Technical Education, Science Education and Modern Industries, Hakim Ajmal Khan and Ayurveda, R. N. Chopra and Indigenous Drugs, Gauhar Jaan and Indian Classical Music; Linking Science and the Rural - Tagore's Sriniketan Experiment, Marthandam, the YMCA Model, Gandhi's Thoughts on Development, Nehru's View of Growth; Post-Independence Era - Modernization and Traditional Knowledge, Social Roots of Traditional Knowledge Activism, Global Recognition for Traditional Knowledge. Global Mechanisms of Protection and Sharing: For Recognition and Protection - United Nations Educational, Scientific and Cultural Organization (UNESCO), World Health Organization (WHO), International Labour Organization; Norms of Sharing - United Nations Environment Programme (UNEP), World Intellectual Property Organization (WIPO), World Trade

Organization (WTO); IPR and Traditional Knowledge - Theoretical Background, Positive Protections of TK, Defensive Strategies, IPR Facilitation for TK. **Traditional Knowledge for Basic Needs:** Indian Midwifery Tradition—The Dai System, Surface Flow Irrigation Tanks, Housing - A Human Right, Changing Priorities—Niyamgiri. **Biodiversity and Genetic Resources:** Jeevani - The Wonder Herb of Kanis, A Holistic Approach - FRLHT, Basmati - In the New Millennium, AYUSH-Based Cosmetics. **Traditional Knowledge in Manufacturing and Industry:** Drug Discovery, A Sweetener of Bengal, The Sacred Ring of Payyanur, Channapatna Toys. **Traditional Cultural Expressions:** Banarasi Saree, Music, Built and Tangible Heritage, Modern Yoga, Sanskrit and Artificial Intelligence, Climate Change and Traditional Knowledge.

Assessment Pattern

Bloom's category	Continuous Tes		Seminar
	1	2	-
Remember	40	40	0
Understand	60	60	100
Apply	0	0	0
Analyze	0	0	0
Evaluate	0	0	0
Create	0	0	0

Learning Resources:

- 1. Nirmal Sengupta "Traditional Knowledge in Modern India Preservation, Promotion, Ethical Access and Benefit Sharing Mechanisms" Springer, 2019.
- 2. Amit Jha,"Traditional Knowledge System in India", Atlantic Publishers and Distributors Pvt Ltd, 2009.
- 3. Basanta Kumar Mohanta, Vipin Kumar Singh "Traditional Knowledge System and Technology in India", Pratibha Prakashan, 2012.
- 4. Kapil Kapoor, Michel Danino "Knowledge Traditions and Practices of India", Central Board of Secondary Education, 2012.
- 5. NPTEL video lecture on "Ayurvedic Inheritance of India", Video link: https://nptel.ac.in/courses/121/106/121106003/#.
- 6. Youtube video on "Introduction to Indian Knowledge Systems", Video link: https://www.youtube.com/watch?v=LZP1StpYEPM.
- 7. Youtube video on "12 Great achievements of Indian Civilization", Video link: https://www.youtube.com/watch?v=xmogKGCmcIE.

Course Designers:

Dr.S.J.Thiruvengadam sjtece@tce.eduDr.V.R.Venkatasubramani venthiru@tce.edu

CO6	TP	S2		Unders	stand	Resp	ond				1.2,	1.2, 3.2.3		
Мар	ping v	with P	rogr	amme (Outco	mesa	nd Pr	ogran	nme S	pecific	Outco	mes		
Co	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L					М		М			s	
CO 2	S	М	L					М		М			S	
CO 3	М	L						М		М			М	
CO 4	S	М	L					М		М			S	
CO 5	S	М	L					М		М			S	
CO	М	L						М		М			М	

S- Strong; M-Medium; L-Low

AssessmentPattern: Cognitive Domain									
Cognitive Levels	Continuous Assessment Tests		Assignment			Terminal Examinati			
		1	2		3	1	2	3	on
Remember	20		20	20		-	-	-	20
Understand	30		30	30		-	-	-	30
Apply	50		50	50		100	100	100	50
Analyse	-		-	-		-	-	-	-
Evaluate	-		-	-		-	-	-	-
Create	-	•	-	-		-	-	-	-

AssessmentPattern: Psychomotor					
Psychomotor Skill	Miniproject/Assignment/Practical Component				
Perception	-				
Set	-				
Guided Response	-				
Mechanism	-				
Complex Overt Responses	-				
Adaptation	-				
Origination	-				

Sample Questions for Course Outcome Assessment Course Outcome1(CO1):

- 2. What are the advantages of Per Unit Value System?
- 3. Draw the reactance diagram for the power system shown in fig. Neglect resistance and use a base of 50MVA and 13.8KV on generator G_1

 $\begin{array}{lll} G_1:\ 20MVA,\ 13.8KV,\ X''=20\% & ; & G_2:\ 30MVA,\ 18.0KV,\ X''=20\% \\ G_3:\ 30MVA,\ 20.0KV,\ X''=20\% & ; & T_1:\ 25MVA,\ 220/13.8\ KV,\ X=10\% \end{array}$

T₂:3Single phase unit each rated 10MVA, 127/18 KV, X =10%

T₃: 35MVA, 220/22 KV, X =10%

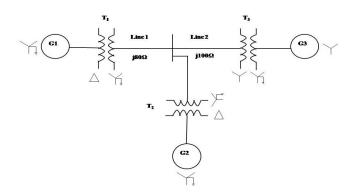


Fig. 1

Course Outcome2(CO2):

- 1. Develop the relation between bus admittance matrix, bus incidence matrix and primitive admittance matrix.
- 2. Form Y_{bus} by inspection method for the 4 bus system with line series impedances in per units as given below:

<u>Line (bus to bus)</u>	<u>Impedance</u>
1 - 2	0.15 + j0.6 p.u
1 - 3	0.01 + j0.4 p.u
1 - 4	0.15 +j0.6 p.u
2 - 3	0.05 +j0.2 p.u
3 - 4	0.05 +j0.2 p.u

Course Outcome3(CO3):

- 1. What are the three types of buses used to define the power flow problem? Is it possible to solve the power flow problem without such definition?
- 2. The following is the system data for a load flow solution. Determine the voltages at the end of first iteration using Gauss-Seidel method. Take α =1.6.

The line admittances:

Bus code	Admittance
1-2	2-j8.0
1-3	1-j4.0
2-3	0.666-j2.664
2-4	1-j4.0
3-4	2-i8.0

The schedule of active and reactive powers:

Bus code	P in p.u	Q in p.u	V in p.u	Remarks
1	-	-	1.06	Slack
2	0.5	0.2	1+j0.0	PQ
3	0.4	0.3	1+j0.0	PQ

_					
	4	0.3	0.1	1+j0.0	PQ

Course Outcome 4 (CO4):

1. A 50 MVA, 11kV, three phase synchronous generator is subjected to different types of faults. The fault currents are as follows:

LG fault: 4200 A LL fault: 2600 A LLG fault: 2000A

The generator neutral is solidly grounded. Find the p.u values of the three sequence reactance of the generator.

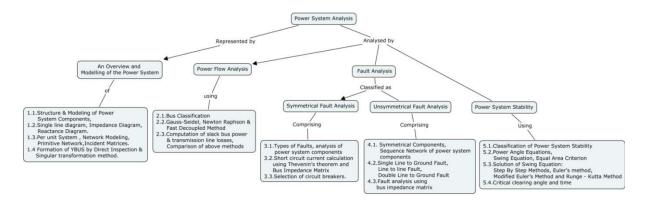
2. Compare the impacts of symmetrical and unsymmetrical faults in a power system.

Course Outcome 5 (CO5):

- 1. A 30MVA, 11KV, 3Φ synchronous generator has a direct subtransient reactance of 0.25 p.u. The negative and zero sequence reactance are 0.35 and 0.1 p.u respectively. The neutral of the generator is solidly grounded. Determine the sub transient current in the generator and the line to line voltages for subtransient conditions when a single line to ground fault, line to line fault and double line to ground fault occurs at the generator terminals with the generator operating unloaded at rated voltage
- 2. Two synchronous machines are connected through three-phase transformers to the transmission line as shown in Figure 2. The ratings and reactance of the machines and transformers are:

Machine 1 and 2: 100MVA, 20 kV; X_d = X_1 = X_2 = 20 % X_0 = 4%, X_1 = 5%

Transformer T_1 and T_2 : 100MVA, 20 Δ /345 Y kV; X=8%


Fig.2

Find the sub transient current in the machine 1 and 2 for a fault at machine 1.

Course Outcome6(CO6):

- 1. Explain the significant differences between direct axis transient reactance and direct axis sub transient reactance of alternator.
- 2. Distinguish between steady state and transient state stabilities.
- 3. A generator is delivering 1p.u power to an infinite bus system through a purely reactive network when the occurrence of a fault reduces the generators output power to zero. The maximum power that could be delivered is 2.5p.u. When the fault is cleared, original network conditions again exist. Determine critical clearing angle. If H=6 MJ/MVA, Calculate critical clearing time.

Concept Map

Syllabus

An Overview and Modelling of the Power System: Introduction - Structure of Electric Power System - Modeling of Power System Components - Single line diagram - Impedance Diagram - Reactance Diagram - Per unit System - Network Modeling - Bus Frame Network - Primitive Network - Incident Matrices - Formation of bus admittance matrix (Y_{BUS}) - Direct Inspection method and Singular transformation methods - Formation of bus impedance matrix (Z_{BUS}) without mutual coupling.

Power Flow Analysis: Introduction – Bus Classification – Load Flow Equations – Load flow methods – Gauss-Seidel Method – Newton-Raphson Method – Fast Decoupled Method – Computation of slack bus power and transmission line losses – Comparison of above methods.

Symmetrical Fault Analysis: Introduction – Types of Faults – Short circuit analysis of power system components: Synchronous Machine and Transmission Line – Short circuit current calculation using Thevenin's theorem and Bus Impedance Matrix – Short circuit capacity – Selection of circuit breakers.

Unsymmetrical Fault Analysis: Introduction – Symmetrical Components – Sequence Impedances – Sequence Network of power system components: Synchronous Machines, Transmission Line, Transformer and Loads – Single Line to Ground Fault – Line to line Fault – Double Line to Ground Fault – Unsymmetrical fault analysis using bus impedance matrix. Indian Standards for Short Circuit analysis IS-13234.

Power System Stability: Introduction – Classification of Power System Stability – Power Angle Equations – Swing Equation – Transient Stability – Assumptions in transient stability analysis – Equal Area Criterion – Solution of Swing Equation: Step By Step Methods, Euler's method, Modified Euler's Method and Runge – Kutta Method – Critical clearing angle and time.

Learning Resources

- 1. John J. Grainger and Stevenson Jr. W.D., 'Power System Analysis', McGraw Hill International Edition, Fourth Edition, 1994.
- 2. Nagarath.I.J, Kothari.D.P, 'Modern Power System Analysis', Tata McGraw Hill Pub. Co. Ltd., Third Edition, 2004.
- 3. P. Venkatesh, B. V. Manikandan, S. Charles Raja and A. Srinivasan, 'Electrical Power Systems: Analysis, Security and Deregulation', PHI Learning Pvt. Ltd., First Edition, 2012.

- 4. HadiSaadat., 'Power System Analysis' Tata McGraw Hill Publishing Company, New Delhi, 2002.
- 5. E.W.Kimbark, Power system stability, Vol I & III, John Wiley & Sons, 2006
- 6. **Stagg**, *G.W.* and **El-Abiad**, A.H., Computer Methods in **Power System** Analysis", McGraw-Hill **Book** Co. 1968
- 7. K.A. Gangadhar., 'Electric Power Systems (Analysis, Stability and Protection)', Khanna Publishers Second Edition, 1992.
- 8. J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma, 'Power System Analysis and Design' Cengage learning, 5th edition, 2016.
- 9. www.schneider-electric.com
- 10. NPTEL courses web: nptel.ac.in/courses/108105067/
- 11. MOOCs course link:https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

Course (Contents and Lecture Schedule					
Module	Topic	No.	of	_		
No.		Hours		Outcome		
1	An Overview and Modelling of the Power System			CO1		
1.1	Power System Components.	, , , , , , , , , , , , , , , , , , , ,				
1.2	Single line diagram – Impedance Diagram – Reactance Diagram.	1		CO1		
1.3	Per unit System – Network Modeling – Bus Frame Network – Primitive Network – Incident Matrices.	2		CO1		
1.4	Formation of bus admittance matrix (Y_{BUS}) – Direct Inspection method and Singular transformation method.	2		CO2		
1.5	Formation of bus impedance matrix (Z_{BUS}) without mutual coupling	1		CO2		
2.	Power Flow Analysis					
2.1	Bus Classification, Load Flow Equations	2		CO3		
2.2	Load flow methods: Gauss-Seidel Method, Newton Raphson Method and Fast Decoupled Method	4		CO3		
2.3	Computation of slack bus power and transmission line losses, Comparison of above methods	2		CO3		
3	Symmetrical Fault Analysis					
3.1	Types of Faults, Short circuit analysis of power system components: Synchronous Machines and Transmission Line	2		CO4		
3.2	Short circuit current calculation using Thevenin's theorem and Bus Impedance Matrix	2		CO4		
3.3	Short circuit capacity, Selection of circuit breakers.	2		CO4		
4	Unsymmetrical Fault Analysis					
4.1	Symmetrical Components, Sequence Impedances, Sequence Network of power system components: Synchronous Machines, Transmission Line, Transformer and Loads	2		CO5		
4.2	Single Line to Ground Fault, Line to line Fault, Double Line to Ground Fault	3		CO5		
4.3	Unsymmetrical fault analysis using bus impedance matrix.	2		CO5		

	Indian Standards for Short Circuit analysis IS-13234.		
5	Power System Stability		
5.1	Classification of Power System Stability, Power Angle Equations, Swing Equation.	2	CO6
5.2	Transient Stability, Assumptions in transient stability analysis, Equal Area Criterion	2	CO6
5.3	Solution of Swing Equation: Step By Step Methods, Euler's method, Modified Euler's Method and Runge - Kutta Method	3	CO6
5.4	Critical clearing angle and time	1	CO6
	Total	36	

Course Designers:

1.	Dr. P. Venkatesh	pveee@tce.edu
2.	Dr. C.K. Babulal	ckbeee@tce.edu
3.	Dr. S. Charles Raja	charlesrajas@tce.edu

18EE620	DATA STRUCTURES	Category	L	Т	Р	Credit
10220	BATA OTROOTORES	ES	3	0	0	3

This course will cover various data structures and their operations for manipulating them. Students will learn how to organize the data so that, the data can be accessed and updated efficiently using computer programs.

Prerequisite

18EE360 C and C++ Programming

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Compare the perforamnce of algorithms using asymptotic notations based on time and space complexity	10
CO2	Apply the concepts of stack and queue for suitable applications in trade off with time and space complexity.	10
CO3	Develop linear list data structure using insertion, deletion, traversing operations	15
CO4	Develop non linear list data structure using the insertion, deletion, traversing operations	20
CO5	Develop a strategy to store and uniformly distribute data in a hash table without collision.	10
CO6	Apply suitable algorithm to retrieve the maximum and minimum data in a collection and merge data using appropriate heap.	15
CO7	Apply suitable sorting procedure to arrange the given data of different size	20

CO Mapping with CDIO Curriculum Framework							
CO	TCE	Learning Dom	nain Level		CDIO Curricular		
#	Proficiency	Cognitive	Affective	Psychomotor	Components		
	Scale			•	(X.Y.Z)		
CO1	TPS2	Understand	Respond		1.3, 2.1.2, 3.2.3		
CO2	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		
CO3	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		
CO4	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		
CO5	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		
CO6	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		
CO7	TPS3	Apply	Value		1.3, 2.1.2, 3.2.3		

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO	РО	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	М	L						М		М				М
CO2	S	М	L					М		М				S
CO3	S	М	L					М		М				S
CO4	S	М	L					М		М				S
CO5	S	М	L					М		М				S
CO6	S	М	L					М		М				S
CO7	S	М	L					М		М				S

S- Strong; M-Medium; L-Low

Assessment	Assessment Pattern: Cognitive Domain						
Cognitive	Continuous Assessment Tests			Assig	ınment	Terminal	
Levels	1	2	3	1	2	3	Examinati on
Remember	20	20	10	-	-	-	10
Understand	20	20	30	-	-	-	30
Apply	60	60	60	100	100	100	60
Analyse							
Evaluate							
Create							

Assessment Pattern: Psychomotor					
Psychomotor Skill	Assignments				
Perception					
Set					
Guided Response					
Mechanism					
Complex Overt Responses					
Adaptation					
Origination					

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Define Space Complexity and Time Complexity.
- 2. Define Efficiency of an algorithm/program and ways to determine it.
- 3. List down the four different asymptotic notations and their need.

Course Outcome 2 (CO2):

- 1. Create a Queue and demonstrate various operations in it.
- 2. Create a Stack and demonstrate various operations in it.

3. Demonstrate various applications of stack using suitable data.

Course Outcome 3(CO3)

- 1. Given an array and a singly linked list. Which of these data structures uses more memory space to store the same number of elements? Justify your answer.
- 2. Check whether a given string is a palindrome or not using a double linked list.
- 3. Solve the Josephus problem using a circular linked list.

Course Outcome 4 (CO4)

- 1. Perform the AVL algorithm for non AVL trees. In each case, count the number of updated links required by the AVL rotation. Given a simple expression tree, consisting of basic binary operators i.e., + , ,* and / and some integers, write an algorithm to evaluate the expression tree.
- 2. Construct a binary tree using inorder and preorder traversal of the binary tree:

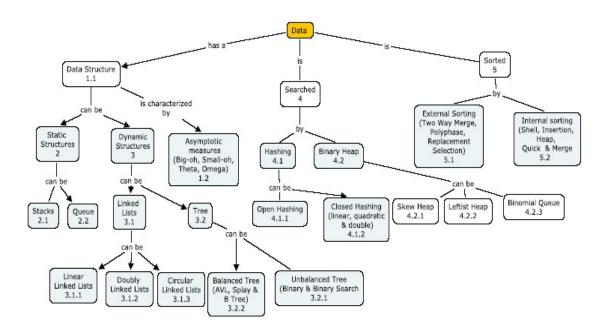
Inorder D, B, H, E, A, I, F, J, C, G Preorder A, B, D, E, H, C, F, I, J, G

3. Construct binary tree. Show the step by step process with suitable algorithm.

Course Outcome 5 (CO5)

- 1. Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function h(x) = x (mod () 10), show the resulting
 - a. separate chaining hash table
 - b. hash table using linear probing, quadratic probing
- 2. Consider implementing a hash table for an application in which we will build an initial hash table by inserting asubstantial collection of records. After this, we expect that the number of insertions and the number of deletions performed to be roughly the same, although there may be long runs of consecutive insertions or consecutive deletions. Furthermore, the table will use a probe strategy to resolve any collisions that occur during insertion, and therefore we will "tombstone" cells from which a record has been deleted. If we implement the hash table described above, then when we search for a record, we cannot conclude the record is not in the table until we have found an empty cell in the table, not just a tombstone. (We will ensurethat the table never reaches the state that there are no empty cells.) Explain carefully why the search cannot stopwhen a tombstone is encountered.
- 3. Let m = 17, h1(x) = (k+15)%m, h2(x) = (4k+11)%m, and h3(x) = (7k+2)%m.Insert the keys 23, 7, 50, and 91 into the bit vector, and show the resulting vectors content. Then, find a key that is a false positive; that is, find a key that appears to have been inserted, but wasn't.

Course Outcome 6(CO6):


- 1. For a binary heap stored in an array, the root is stored in position 1, the parent of node i is stored in position floor(i/2), the left child is in position 2i, and the right child is in position 2i+1. What about a d-heap stored in an array? In what positions are the children and parent of node i stored? [Hint: to start, assume that the root is at position 0. Then modify your results to work with the root at position 1]
- 2. Show the result of inserting keys 1 to 15 in order (i.e. 1 first, then 2 second, then 3 third, etc.) into an initially empty leftist heap. Use the leftist heap insert (i.e. merge) algorithm at each step. Show each step for this process.

3. Prove or disprove: A perfectly balanced tree forms if keys 1 to 2k - 1 are inserted in order (again this means 1 first, then 2 etc) into an initially empty leftist heap. k is a positive integer.

Course Outcome 7(CO7):

- 1. Estimate the execution time of Bubble sort for an reverse order input.
- 2. Recommend a suitable sorting procedure to operate on a large data set with justification.
- 3. Apply quick sort to sort 11,9,13,8,5,7,6,4,18,3,19,1 in ascending order.

Concept Map

Syllabus

Data: Data Structure, Asymptotic Measures **Static Data Structures**: Stacks, Queues **Dynamic Data Structures**: Linked Lists: Linear Linked Lists, Doubly Linked Lists and Circular Linked Lists, Trees: Unbalanced and Balanced Trees, **Data Search**: Hashing: Open Hashing and Closed Hashing; Heap: Skew Heap, Leftist Heap, Binomial Queue **Data Sorting**: Internal Sorting: Insertion sorting, Shell sorting, Quick sorting, Merge sorting and Heap sorting; External Sorting

Learning Resources

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Pearson, 2007
- 2. Adam Drozdek, "Data structures and Algorithms in C++", Cengage Learning; 4th edition, 4th Edition, 2012.
- 3. Y. Langsam, M. J. Augenstein and A. N. Tanenbaum, "Data Structure Using C and C++", Pearson Education, 2nd Edition, 2015.

Course Contents and Lecture Schedule

No.	Topic	No.of	Course	
-----	-------	-------	--------	--

		Lectures	Outcome
1	Data (4)		
1.1	Data Structure	2	CO1
1.2	Asymptotic Measures	2	CO1
2	Static Data Structures (4)		
2.1	Stacks	3	CO2
2.2	Queues	2	CO2
3	Dynamic Data Structures(14)		
3.1	Linked Lists	1	CO3
3.1.1	Linear Linked Lists	2	CO3
3.1.2	Doubly Linked Lists	2	CO3
3.1.3	Circular Linked Lists	1	CO3
3.2	Trees	1	CO4
3.2.1	Unbalanced Trees	2	CO4
3.2.2	Balanced Trees	5	CO4
4	Data Search (10)		
4.1	Hashing	1	CO5
4.1.1	Open Hashing	1	CO5
4.1.2	Closed Hashing	2	CO5
4.2	Heap	2	CO6
4.2.1	Skew Heap	1	CO6
4.2.2	Leftist Heap	2	CO6
4.2.3	Binomial Queue	1	CO6
5	Data Sorting (8)		
5.1	Internal Sorting		
5.1.1	Insertion sorting	1	CO7
5.1.2	Shell sorting	1	CO7
5.1.3	Quick sorting	1	CO7
5.1.4	Merge sorting	1	CO7
5.1.5	Heap sorting	2	CO7
5.2	External Sorting	2	CO7

Course Designers:

1. S.Prasanna sprcse@tce.edu

4055070	ENERGY MANAGEMENT	ERGY MANAGEMENT SYSTEM	Category	L	Т	Р	Credit
18EE670	LABORATORY		PC	0	0	2	1

The aim of this lab course is to train the students in modelling, designing and analysing solar systems, analysing the various characteristics of solar system and performance of various converters used in solar systems using various state of the art hardware setup.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyze the characteristics of solar system using simulation software	30
CO2	Analyze the performance of various charge controllers used in solar system module experimentally	10
CO3	Analyze the efficiency various converters used in solar system module experimentally	10
CO4	Analyze the performance of the PV array at different tilt angles experimentally	10
CO5	Analyze the effect of frequency of light on power output of solar panel experimentally	10
CO6	Analyze spectral response for different wave lengths of light using spectral response system module experimentally	10
CO7	Analyse the energy consumption of an institution using smart metering infrastructure.	10
CO8	Perform simulation studies using a state of the art Solar PV WIND Hybrid System with DC Micro Grid setup	10

^{***} Weightage depends on Bloom's Level, number of contact hours.

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning D	Domain Level			CDIO Curric	ular
#	Proficiency	Cognitive	Affective	Psychomotor		Components	
	Scale					(X.Y.Z)	
CO1	TPS4	Apolyzo	Organiza	Complex	Overt	1.2.11, 2.1.5, 2.	2.3
		Analyze	Organize	Responses		2.4.4, 3.2.3	
CO2	TPS4	Analyza	Organiza	Complex	Overt	1.2.11, 2.1.5, 2.2	2.3,
		Analyze	Organize	Responses		2.4.4, 3.2.3	
CO3	TPS4	Analyza	Organiza	Complex	Overt	1.2.11, 2.1.5, 2.2	2.3,
		Analyze	Organize	Responses		2.4.4, 3.2.3	
CO4	TPS4	Analyza	Organiza	Complex	Overt	1.2.11, 2.1.5, 2.2	2.3,
		Analyze	Organize	Responses		2.4.4, 3.2.3	,

CO5	TPS3	Apply	Value	Mechanism		1.2.11 2.4.4,	, 2.1.5, 3.2.3	2.2.3,
CO6	TPS4	Analyze	Organize	Complex Responses	Overt	1.2.11 2.4.4,	, 2.1.5, 3.2.3	2.2.3,
CO7	TPS4	Analyze	Organize	Complex Responses	Overt	1.3, 3.2.3	2.1.5,	2.4.4,
CO8	TPS3	Apply	Value	Mechanism		1.3, 3.2.3	2.1.5,	2.4.4,

Mapping with Programme Outcomesand Programme Specific Outcomes Co PO PO PO РО PO PO PO PO1 PO1 | PO1 **PSO PSO** PO PO 1 2 4 5 6 7 8 9 0 1 2 1 2 CO S S S Μ L S Μ M CO S S S Μ L S M Μ 2 CO S S S Μ L S Μ Μ 3 CO S S S M L S M Μ 4 CO S S Μ L M Μ 5 CO S S S Μ L S Μ Μ 6 CO S S Μ L Μ S S CO S S S Μ Μ S S S 8

S- Strong; M-Medium; L-Low

AssessmentPattern: Cognitive Domain

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand		
Apply	30	30
Analyse	40	40
Evaluate		
Create		

AssessmentPattern: Psychomotor

7 tooooomonti attorni r oyonom	
Psychomotor Skill	Miniproject/Practical Component/Observation
Perception	
Set	
Guided Response	
Mechanism	30
Complex Overt Responses	

Adaptation	
Origination	

List of Experiments/Activities with CO Mapping

- 1. Draw I-V and P-V characteristics of solar cell at different series/parallel configurations using solar simulation system module. (CO1)
- 2. Draw I-V and P-V characteristics of solar cell at different series/parallel configurations using solar simulation system module with change in illumination. (CO1)
- 3. Draw I-V and P-V characteristics of various solar modules such as mono crystalline, multi crystalline and thin film module using solar PV module technologies training system module. (CO1)
- 4. Compare and analyze the performance of charge controllers such as MPPT and PWM using solar charge controller module (CO2)
- 5. Analyze the efficiency of step up and step down converter and DC to AC converter at different power in a solar system using DC-DC and DC-AC converter setup module. (CO3)
- 6. Measurement of operating parameters i.e. current and voltage of PV array at different tilt angle using solar PV tracking system module. (CO4)
- 7. Find the variation of power output of solar panel with the various frequencies of light. (CO5)
- 8. Measurement of minority carrier life time in solar cell using carrier life time measurement system module. (CO6)
- 9. Measurement and comparison of spectral response for different wave lengths of light and obtain spectral response curve using spectral response training system module. (CO6)
- 10. Interfacing with software to obtain I-V and P-V characteristics of solar cell for larger number of data using the possible modules (CO1)
- 11. Analysis of TCE energy report by smart metering infrastructure (CO7)
- 12. Import and export energy analysis using 1KW grid tie solar PV System.(CO7)
- 13. DC micro grid system operations for the effect of change in wind speed and pitch angle.(CO8)

Learning Resources

- 1. https://www.kwattsolutions.com
- 2. Solar Training Manuals prepared by kWatt Solutions Private Limited, Mumbai
- 3. https://www.elmeasure.com
- 4. https://www.ecosenseworld.com/labs/wind-energy-labs/wind-energy-training-system

Course Designers:

Dr. P. Venkatesh
 Dr. C.K. Babulal
 Dr. S. Charles Raja
 pveee@tce.edu
 ckbeee@tce.edu
 charlesrajas@tce.edu

4055000	POWER ELECTRONICS AND DRIVES LAB	Category	L	Т	Р	Credit
18EE680		PC	0	0	2	1

This laboratory gives a practical exposure to the students to learn the power electronics and drives. The students will be able to design and analyze power converters such as AC-DC converters, DC-DC converters, DC-AC converters, AC- to AC converters and their control circuits for real world applications.

Prerequisite

- 18EE320:DC machines and Transformers
- 18EE420:AC machines
- 18EE530:Power electronics

Course C	Course Outcomes					
CO No.	Course outcomes	Weightage in %				
CO1	Analyze the performance of driver circuits for SCR/MOSFET/IGBT experimentally	15				
CO2	Analyze the performance of the SCR commutation circuits designed for the given specifications experimentally	10				
CO3	Analyze the performance of the designed controlled rectifiers with 'R' and 'RL' loads experimentally	10				
CO4	Analyze the performance of the DC chopper and static circuit breakers designed for the given specifications experimentally	10				
CO5	Analyze the performance characteristics of the given DC and AC drive by conducting suitable experiments	20				
CO6	Develop a power electronic circuit for the given design specifications	20				
CO7	Analyze the performance of the given Power electronic circuit using PSIM/ MATLAB-Simulink/ PSPICE/ PLECS/ VSIM/ PSCAD simulation tool	10				
CO8	Explain the working of Battery simulator, Mixed domain oscilloscope, Programmable AC /DC Power supplies and Picoscope.	5				

CO mapping with CDIO curriculum framework:

CO	TCE	Learning Do	main Level	CDIO Curricular			
#	Proficiency Scale	Cognitive	Affective	Psychomotor	Components (X.Y.Z)		
CO1	TPS4	Analyze	Organize	Complex Overt Responses	1.2, 2.2.3, 3.1.2,		
CO2	TPS4	Analyze	Organize	Complex Overt Responses	1.2, 2.2.3,,3.1.2, 4.5.1		
CO3	TPS4	Analyze	Organize	Complex Overt Responses	1.2, 2.2.3, 3.1.2, 4.5.1		

CO4	TPS4	Analyze	Organize	Complex Overt	1.2, 2.2.3, ,3.1.2,
		Allalyze	Organize	Responses	4.5.1
CO5	TPS4	Analyze	Organize	Complex Overt	1.2 , 2.2.3, 3.1.2,
		Allalyze	Organize	Responses	4.5.1
CO6	TPS5	Evaluate	Organize	Complex Overt	1.2, 2.2.3, 3.1.2, 4.5.1
		Evaluate	_	Responses	
CO7	TPS5	Evaluate	Organize	Complex Overt	1.2, 2.2.3, 13 ,3.1.2,
		Evaluate	_	Responses	4.5.3
CO8	TPS2	Understand	Respond	Guided	1.2 , 2.2.3, 3.1.2
		Understand		response	

Мар	ping	with F	rogr	amme	Out o	comes	s and	Prog	ramn	ne Spe	cific O	utcom	es	
CO	РО	PO	PO	PO	PO	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO2
S	1	2	3	4	5	6	7	8	9	0	1	2	1	
CO 1	S	S	М	L	S			М		M			S	S
CO 2	S	S	М	L	S			М		M			S	S
CO 3	S	S	М	L	S			М		M			S	S
CO 4	S	М	L		S			М		M			S	S
CO 5	S	S	М	L	S			М		M			S	S
CO 6	S	S	М	L	S			М		M			S	S
CO 7	S	S	S	М	S			М		М			S	S
CO 8	М	L			М			М		М			М	М

S- Strong; M-Medium; L-Low

Assesment Pattern : congnitive domain:

Cognitive Levels	Model Examination	Terminal Examination
Remember		
Understand		
Apply	30	30
Analyze	30	50
Evaluate	20	
Create		-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject Component/Observation	/Practical
Perception		
Set		
Guided Response		
Mechanism		
Complex Overt Responses	20	
Adaptation		
Origination		

List of Experiments/Activities With CO Mapping

- 1. 'R' and RC triggering circuits for half wave controlled rectifiers (CO1)
- 2. UJT triggering circuit for half wave controlled rectifier (CO1)
- 3. MOSFET/IGBT/SCR Driver circuits (CO1)
- 4. Voltage, current and complementary commutation techniques(CO2)
- 5. Half controlled and fully controlled rectifier with 'R' and 'RL' loads(CO3)
- 6. Static DC and AC circuit breakers(CO4)
- 7. Single quadrant DC chopper(CO4)
- 8. Half controlled rectifier fed DC motor(CO5)
- 9. Voltage commutated chopper fed DC motor(CO5)
- 10. AC voltage controller fed single phase induction motor(CO5)
- 11. PLC/DSP based 3 phase induction motor drive(CO5)
- 12. V/F control of Induction motor(CO5)
- 13. Switched reluctance motor drive(CO5)
- 14. Simulation of power electronic converter circuits using PSIM/ MATLAB-Simulink/ PSPICE/PLECS/VSIM/PSCAD (CO7)
- 15. Study of Battery simulator, Mixed domain oscilloscope, Programmable AC /DC Power suplies and Picoscope.(CO8)
- 16. Design, implementation and operation of the power electronic circuits for the given design specifications.(CO6)

Learning Resources

- **1.** Muhammad H.Rashid, Power Electronics Circuits, Devices & Applications Pearson Education India Publication, New Delhi, 7th Impression, 2009.
- **2.** M.D.Singh & K.B.Khanchandani, Power Electronics Tata Mc Graw Hill publishing company Ltd, New Delhi, 2008.
- **3.** Ned Mohan, Tore Undeland & William Robbins, Power Electronics: converters Applications and Design-John Willey and sons, 3rd Edition, 2003.
- **4.** P.S. Bimbra, Power Electronics- Khanna Publishers, 3rd Edition, 2004.
- **5.** Daniel W.Hart, Introduction to power Electronics Prentice Hall International Inc., 1997.
- 6. L. Umanand, Power Electronics: Essentials and Applications- Wiley India, 2009.
- 7. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/

Course designers

- 1. Dr. V. Suresh Kumar
- vskeee@tce.edu
- 2. Dr. S. Arockia Edwin Xavier
- saexeee@tce.edu

18EE710	ELECTRIC POWER UTILIZATION	Category	L	Т	Р	Credit
IOLL7 IO	LEESTRIC FOWER STILIZATION	PC	3	-	-	3

Preamble

This course provides the application oriented basic knowledge to the electrical engineers, with the aspect of effective utilization of electrical energy for various residential as well as industrial applications. This course familiarizes the students in five major electrical energy utilization aspects such as electric drive, electric heating, electric welding, illumination and electric traction.

Prerequisite

- 18EE320: DC machines and Transformers
- 18EE420: AC machines

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Design the rating of suitable drive for the specified industrial applications	20
CO2	Design a suitable heating element for an electric heating application.	15
CO3	Explain the various types of electric welding	10
CO4	Explain the suitable lamp, lighting scheme and its effective utilisation for the specified applications	20
CO5	Design lighting schemes to Domestic, Office, Industrial and Commercial applications based on the specific lighting level standards.	15
CO6	Explain the principle and operation of electric traction	20

^{***} Weightage depends on Bloom's Level, number of contact hours.

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dom	ain Level	CDIO Curricular Components	
#	Proficiency Scale			•	
CO1	TPS3	Apply	Value		1.2, 2.1.5, 2.3.1,3.2.3
CO2	TPS2	Apply	Value		1.2, 2.1.5, 2.3.1,3.2.3
CO3	TPS2	Understand	Respond		1.2, 2.3.1, 2.3.1,3.2.3
CO4	TPS2	Understand	Respond		1.2, 2.3.1,3.2.3
CO5	TPS3	Apply	Value		1.2, 2.1.5, 2.3.1,3.2.3
CO6	TPS2	Understand	Respond		1.2, 2.3.1,3.2.3

Map	Mapping with Programme Outcomes and Programme Specific Outcomes													
Co	PO	PO	РО	PO	РО	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2

1	8ES69	0
---	-------	---

ENGINEERING DESIGN PROJECT

Category	L	Т	Р	Credit
Project	1	0	4	3

Preamble

An engineer must understand the economic, social, political, sustainability and environmental contexts in which the need arises. Engineering solutions are always created in response to some societal/industrial need. Understanding the societal/industrial need is central to success in engineering design. Therefore, the engineering students have been assigned on the problem identification phase of engineering design. Now, they have an opportunity to reflect and realise the knowledge that have been gained through the courses such as 18ES150 Engineering Exploration, 18ES290 Lateral Thinking, 18ES390 Design Thinking, 18XX490 Project Management and 18ES590 System Thinking. This course will enable the students to integrate CDIO Skill-based courses and their domain-specific courses. More specifically, by employing the broad knowledge they gain from experiences in foundation elective, general elective and audit courses, students are better equipped to provide engineering solution societal and/or industrial needs.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage in %							
CO1	Execute different phases of engineering design project including	20							
	functional composition and design specification in a team.								
CO2	Evaluate the alternate engineering design approaches as per the	20							
	performance criteria with design verification and validation.								
CO3	Evaluate a design with the use of test verification matrix / Design	15							
	Failure Mode Effect Analysis (DFMEA)/ Usability testing								
CO4	Explain the significance of Intellectual Property rights and the	15							
	procedure for searching and filing a patent.	ocedure for searching and filing a patent.							
CO5	Exhibit team work with appropriate conflict management strategies. 10								
CO6	Prepare appropriate design documents and deliver effective	10							
	technical presentations								

CO Mapping with CDIO Curriculum Framework

CO Mapping with CDIO Curriculum Framework										
TCE	Learr	ning Domair	n Level	CDIO Curricular Components						
Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)						
Scale			•							
TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.1, 3.1.2, 3.2.3,						
				3.2.6, 4.1.2						
TPS5	Evaluate	Organise	Adaptation	1.1, 1.2, 2.1.2, 2.5.1, 2.5.2,						
				3.1.2, 3.2.3, 3.2.6, 4.1.2						
TPS5	Evaluate	Organise	Adaptation	1.1, 1.2, 2.1.3, 3.1.2, 3.2.3,						
				3.2.6, 4.1.2, 4.3.1						
TPS2	Understand	Respond	Guided	1.1, 1.2, 2.1.4, 3.1.2, 3.2.3,						
			Response	3.2.6, 4.1.2, 4.4.1						
TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.5, 3.1.2, 3.2.3,						
				3.2.6, 4.1.2, 4.4.1						
TPS3	Apply	Value	Mechanism	1.1, 1.2, 2.1.4, 3.1.2, 3.2.3,						
				3.2.6, 4.1.2, 4.4.1						
	TCE Proficiency Scale TPS3 TPS5 TPS5 TPS2 TPS3	TCE Learn Proficiency Scale TPS3 Apply TPS5 Evaluate TPS5 Evaluate TPS2 Understand TPS3 Apply	TCE Learning Domair Proficiency Scale TPS3 Apply Value TPS5 Evaluate Organise TPS5 Evaluate Organise TPS2 Understand Respond TPS3 Apply Value	TCE Learning Domain Level Proficiency Cognitive Affective Psychomotor TPS3 Apply Value Mechanism TPS5 Evaluate Organise Adaptation TPS5 Evaluate Organise Adaptation TPS2 Understand Respond Guided Response TPS3 Apply Value Mechanism						

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	М	L	-	-	М	М	M	S	S	S	S
CO2	S	S	S	М	-	М	М	M	S	S	S	S
CO3	S	S	S	М	S	М	М	S	S	S	S	S
CO4	M	L	-	-	-	М	М	-	-	-	-	S
CO5	S	М	L	-	-	М	М	S	S	S	М	S
CO6	S	М	L	-	-	-	-	S	S	S	-	S

S- Strong; M-Medium; L-Low

Assessment Pattern:

Phases	Deliverables	Marks	Course							
			Outcomes							
Continuous Assessment										
Review 1 – Engineering Design Project	Technical	10	CO1, C06							
Selection, functional decomposition and	Report									
Specification	·									
Review 2 – Evaluation of Design Approaches	Technical	20	CO2, CO5, CO6							
	Report									
Review 3 – Design Verification and validation	Technical	20	CO3, CO4, CO6							
_	Report									
End-Semeste	er Examination									
Demonstration	Prototype	60	CO1, CO2, CO3,							
Design Portfolio Presentation	Portfolio	40	CO4 CO5, CO6							
	Document									

- Reports are to be submitted at each review. The report and presentation will be evaluated based on customized Rubrics for periodic reviews.
- Demonstration and Design Portfolio presentation will be evaluated by two faculty members nominated by their respective Head of the Department.

Syllabus

Project Selection – Search Phase, Preliminary Design Review (PDR) and Critical Design Review (CDR), Project Specification, Proposal Report, Proposal Presentation

Engineering Design Process - The NASA Design Approach, Design Verification and Validation ,Design Verification Plan - DFMEA, test verification matrix, Usability testing, DRIDS-V Design Approach and Plan

Intellectual Property Rights – Trademarks, Copyrights and Patents, Types of patents, Searching patents, Filing Patents

Team formation and Communication – Types of teams, Team Conflict Management – common causes, cultural styles and conflict, Project Team Evaluation, Conducting Meetings and Making Presentations

Learning Resources

- Harvey F. Hoffman, "The Engineering Capstone Course: Fundamentals for Students and Engineers", Springer, 2014
- https://sharepoint.ecn.purdue.edu/epics/teams/Public%20Documents/EPICS Design Pr ocess.pdf?_ga=2.252800138.2089889711.1612784342-1089955741.1612784342

Course Contents and Lecture Schedule

Module No	Topic		Course Outcome
1	Project Selection		
	Search Phase, Preliminary Design Review (PDR) and	2	CO1,
	Critical Design Review (CDR), Project Specification,		CO6

	Proposal Report, Proposal Presentation		
2	Engineering Design Process		
2.1	The NASA Design Approach	1	CO2
2.2	Design Verification and Validation	1	CO2
2.3	Design Verification Plan – DFMEA, test verification matrix, Usability testing,	2	CO3
2.4	DRIDS-V Design Approach and Plan	1	CO3
3	Intellectual Property Rights		
3.1	Trademarks, Copyrights and Patents,	1	CO4
3.2	Types of patents, Searching patents,.	1	CO4
3.3	Filing Patents	1	CO4
4	Team formation and Communication		
4.1	Types of teams, Team Conflict Management – common causes, cultural styles and conflict,	1	CO5
4.2	Project Team Evaluation, Conducting Meetings and Making Presentations	1	CO5, CO6
	Total	12	

Course Designers:Dr.S.J. ThiruvengadamDr. S.Saravana Perumaal sjtece@tce.edu sspmech@tce.edu jeyamala@tce.edu • Dr.C.Jeyamala

CO 1	s	М	L			М	М		S	
CO 2	s	М	L			М	М		S	
CO 2 CO 3 CO	М	L				М	М		М	
4	М	L				М	М		М	
CO 5	s	М	L			М	М		S	
CO 5 CO 6	М	L				М	М		М	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests			Assig	nment	Terminal Examination	
Levels	1	2	3	1	2	3	
Remember	20	20	20	-	-	-	20
Understand	30	30	30	-	-	-	30
Apply	50	50	50	100	100	100	50
Analyse							
Evaluate							
Create							

Assessment Pattern: Psychomotor

Psychomotor Skill	Assignment
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	_

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. A 15HP motor has a heating time constant of 2 hours. Determine the time in which it attains a temperature of 40°C from its value of 10°C, while working continuously on full load, if its final steady temperature is 45°C
- 2. A motor driving a colliery winder equipment has to deliver a load rising uniformly from zero to maximum of 2000HP in 20s during the acceleration period 1000HP for 40s during the full load period and during the deceleration period of 10s when regenerative breaking is taking place, the HP returned to supply falls from 330 to zero. The interval for decking before the next load cycle starts is 20 seconds. Estimate the HP rating of the motor.

Course Outcome 2 (CO2):

- 1. Dielectric heating is to be employed to heat a slab of insulating material 20mm thick and 1530mm2 in area. Power required is 200W and a frequency of 3MHz is to be used. The material has a permittivity of 5 and power factor of 0.05. Determine the voltage necessary and the current which will flow through the material
- 2. A 22 kW, single phase 220 V resistance oven employs circular Nichrome wire for its heating element. The wire temperature is not to exceed 1250°C and the temperature of the charge is 500°C. Calculate the size and length of the wire required. Assume radiating efficiency (K) is 0.6, emmissivity (ε) is 0.9and specific resistance of the wire (ρ) is 101 x 10⁻⁶ cm.
- 3. A piece of insulating material is to be heated by dielectric heating. The size is x 10 x 3 cm. A frequency of 20 MHz is used and the power absorbed is 500 Watts. Calculate the voltage necessary for heating and current that flows in the material. The material has relative permittivity of 5 and power factor of 0.05.

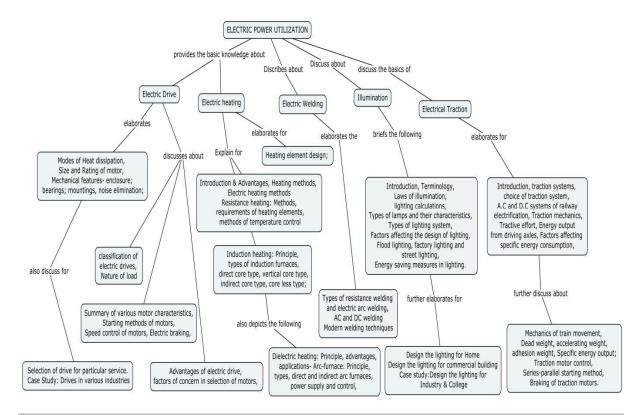
Course Outcome 3(CO3):

- 1. Briefly explain the various types of resistance welding.
- 2. Discuss on any two types of resistance welding.
- 3. Discuss about modern welding used in industries.

Course Outcome 4 (CO4):

- 1. Define utilization factor.
- 2. Discuss about the various factors affecting the design of lighting system.
- 3. A lamp giving 300 CP in all directions below the horizontal is suspended 3 m above the centre of a square table of 1 m side. Calculate the maximum and minimum illumination on the surface of the table.

Course Outcome 5(CO5):


- 4. It is desired to illustrate a drawing hall with an average illumination of 200lux. The hall is 30x20m²; the lamps are to fitted 4m from ground floor. Find the number of lamps and wattage/lamp for the lighting scheme. Given efficiency of the lamps available at 25lumens/watt, depreciation factor is 0.8 and co efficient of utilization 0.75, space height ratio between 0.8 to 1.2. Give satisfactory spacing arrangements.
- 5. Two lamps are hung at a height of 9meter from the floor level. The distance between the lamps is 10meters lamp one is of 500C.P. if the illumination on the floor vertically below the lamp is 20 lux. Find the candle power of the second lamp.

Course Outcome 6 (CO6):

- 1. Draw the trapezoidal speed-time curve for main line service.
- 2. Define coefficient of adhesion.

A train has schedule speed 80 km/hr. The distance between the stations is 6 km. The values of acceleration and retardation are 1.5 kmphps and 2.5 kmphps. Calculate the maximum speed of the train by assuming trapezoidal speed-time curve.

Concept Map

Syllabus

Electric Drive: Advantages of electric drive, factors of concern in selection of motors, classification of electric drives, Nature of load, Summary of various motor characteristics, Starting methods of motors, Speed control of motors, Electric braking, Modes of Heat dissipation, Size and Rating of motor, Selection of drive for particular service. Case Study: Drives in various industries.

Electric heating and welding: Introduction & Advantages, Electric heating methods, Resistance heating: Methods, requirements of heating elements, methods of temperature control, Heating element design; Induction heating: Principle, types of induction furnaces, direct core type, vertical core type, indirect core type, core less type; Dielectric heating: Principle, advantages, applications, Arc-furnace: Principle, types, direct and indirect arc furnaces, Types of resistance welding and electric arc welding, AC and DC welding

Illumination: Introduction, Terminology, Laws of illumination, lighting calculations, Types of lamps and their characteristics, Types of lighting system, Design of lighting scheme, Factors affecting the design of lighting, Flood lighting, factory lighting and street lighting, Energy saving measures in lighting. Case study: Design the lighting for Home, commercial building, Industry, College.

Electrical Traction: Introduction, traction systems, choice of traction system, A.C and D.C systems of railway electrification, Traction mechanics, Tractive effort, Energy output from driving axles, Factors affecting specific energy consumption, Mechanics of train movement, Dead weight, accelerating weight, adhesion weight, Specific energy output; Case study: Current scenario in Indian railway

Learning Resources

- 1. Partab.H, "Art and science of utilization of Electrical Energy", 2015, Dhanpat Rai & Co. (P) Ltd., Delhi, 2016.
- 2. TAYLOR, OPENSHAW E, "Utilization Of Electrical Energy", Orient Blackswan, 1971
- 3. Gupta. J.B., "Utilization of electric power and electric traction", S.K.Kataria and sons , 2013.
- 4. Garg.G.C., "Utilization of electric power and electric traction", Khanna Publishers, 2010.
- 5. V.Ramanathan, P.S.Kannan, V.Saravanan, P.S.Manoharan, "Generation, Electric Energy Utilization and Conservation", Charulatha Publications, Chennai, 2008Course Contents and Lecture Schedule

6. Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Hours	Outcome
1	Electric Drive		
1.1	Advantages of electric drive, factors of concern in selection of motors,	1	CO1
1.2	classification of electric drives, Nature of load	1	CO1
1.3	Summary of various motor characteristics, Starting methods of motors,	1	CO1
1.4	Speed control of motors, Electric braking,	1	CO1
1.5	Modes of Heat dissipation	1	CO1
1.6	Size and Rating of motor	1	CO1
1.7	Selection of drive for particular service. Case Study: Drives in various industries	1	CO1
2.	Electric heating and welding		
2.1	Introduction & Advantages, Electric heating methods	1	CO2
2.2	Resistance heating: Methods, requirements of heating elements, methods of temperature control,	1	CO2
2.3	Heating element design;	1	CO2
2.4	Induction heating: Principle, types of induction furnaces, direct core type, vertical core type, indirect core type, core less type;	1	CO2
2.5	Dielectric heating: Principle, advantages, applications- Arc-furnace: Principle, types, direct and indirect arc furnaces	1	CO2
2.6	Types of resistance welding and electric arc welding	2	CO3
2.7	AC and DC welding	1	CO3
3.	Illumination		
3.1	Introduction, Terminology, Laws of illumination,	2	CO4
3.2	lighting calculations, Types of lamps and their characteristics,	2	CO4
3.3	Types of lighting system, Design of lighting scheme,	2	CO4
3.4	Factors affecting the design of lighting, Flood lighting, factory lighting and street lighting,	1	CO4
3.5	Energy saving measures in lighting.	2	CO4
3.6	Design the lighting for Home	2	CO5

3.7	Design the lighting for commercial building	2	CO5
3.8	Case study:, Design the lighting for Industry College	2	CO5
4.	Electrical Traction		
4.1	Introduction, traction systems, choice of traction system, A.C and D.C systems of railway electrification,	1	CO6
4.2	Traction mechanics, Tractive effort, Energy output from driving axles,	2	CO6
4.3	Factors affecting specific energy consumption,	1	CO6
4.4	Mechanics of train movement, Dead weight, accelerating weight, adhesion weight, Specific energy output;	1	CO6
4.5	Case study: Current scenario in Indian railway	1	CO6

Course Designers:

Manoharan P.S. psmeee@tce.edu
 Shanmugavadivoo.N nsveee@tce.edu
 Nelson Jayakumar D. dnjayakumar@tce.edu

18EE770	ELECTRIC	POWER	SYSTEMS	Category	L	Т	Р	Credit
	LABORATORY			PC	0	0	2	1

Preamble

The aim of this course is to train the students for solving the power system problems using MATLAB coding. The formation of bus admittance matrix followed by power flow solutions using various numerical methods is introduced. Students get the exposure in short circuit analysis and stability analysis under steady state and transient state. Economic load dispatch problem is also performed using MATLAB coding.

Prerequisite

18EE610- Power System Analysis

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Analyze the performance of direct inspection and singular transformation methods for determining Y-bus matrix of the given system using simulation software	20
CO2	Analyse the performance the given power system using Gauss-Seidel method using simulation software	15
CO3	Analyse the performance the given power system using Newton-Raphson method using simulation software	15
CO4	Calculate the fault current for various symmterical and unsymmetrical faults on the given power syste using simulation software	20
CO5	Analyze the transient stability of the power system by applying different fault clearing time to the circuit breaker using simulation software	15
CO6	Compute the optimal dispatch of the given power system using simulation software	15

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO IVIA	ipping with C	DIO Curricu	num Framewo	PK
CO	TCE	Learning [Domain Level	
ш	Droficionov	0 '4'	A CC 1:	

CO	TCE	Learning D	Domain Level			CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	•	Components
	Scale					(X.Y.Z)
CO1	TPS4	Analyze	Organize	Complex	Overt	1.2.15, 2.1.5, 2.2.3,
		Allalyze	Organize	Responses		2.4.4, 3.2.3
CO2	TPS4	Analyze	Organize	Complex	Overt	1.2.15, 2.1.5, 2.2.3,
		Allalyze	Organize	Responses		2.4.4, 3.2.3
CO3	TPS4	Analyze	Organize	Complex	Overt	1.2.15, 2.1.5, 2.2.3,
		Allalyze	Organize	Responses		2.4.4, 3.2.3
CO4	TPS3	Apply	Value	Mechanism		1.2.15, 2.1.5,2.2.3,
		Apply	value	iviechanism		2.4.4, 3.2.3
CO5	TPS4	Analyze	Organize	Complex	Overt	1.2.15, 2.1.5, 2.2.3,

				Responses	2.4.4, 3.2.3
CO6	TPS3	Apply	Value	Mechanism	1.2.15, 2.1.5, 2.2.3 2.4.4, 3.2.3

Mapping with Programme Outcomesand Programme Specific Outcomes РО PO PO PO PO PO P01 P01 PSO Co PO PO PO PO1 **PSO** 4 5 6 8 2 2 3 7 9 0 1 1 2 1 CO S S S Μ L Μ Μ S CO S S S Μ L Μ Μ S CO S S S M L M Μ S CO S M Μ S S Μ 4 CO S Μ Μ S S Μ L S 5 CO Μ Μ S S L S Μ 6

S- Strong; M-Medium; L-Low

AssessmentPattern: Cognitive Domain

Assessmenti attern. Gogintive Bomain						
Cognitive	Model Examination	Terminal Examination				
Levels						
Remember						
Understand						
Apply	40	40				
Analyse	50	50				
Evaluate						
Create						

AssessmentPattern: Psychomotor

Assessmentrattern. Psycholic	Assessment Fattern. Fsychomotor			
Psychomotor Skill	Miniproject/Practical Component/Observation			
Perception				
Set				
Guided Response				
Mechanism	10			
Complex Overt Responses				
Adaptation				
Origination				

List of Experiments/Activities with CO Mapping

- 1. Formation of bus admittance matrix by direct inspection method and singular transformation method (CO1).
- 2. Analysis of Gauss-Seidal methods for solving the power flow equation ((CO2).
- 3. Analysis of Newton-Raphson methods for solving the power flow equation (CO3).
- 4. Symmetrical and unsymmetrical fault analysis in Power System (CO4).

- 5. Analysis of Transient Stability in Power System (CO5).
- 6. Determination of Economic load dispatch for the given load conditions in a power system (CO6).

Learning Resources

- 1. HadiSaadat., 'Power System Analysis' Tata McGraw Hill Publishing Company, New Delhi, 2002.
- 2. P. Venkatesh, B. V. Manikandan, S. Charles Raja and A. Srinivasan, 'Electrical Power Systems: Analysis, Security and Deregulation', PHI Learning Pvt. Ltd., Second Edition, 2017.
- 3. J. Duncan Glover, Mulukutla S. Sarma, Thomas Overbye, 'Power System Analysis and Design', Cengage Learning, Fifth Edition, 2011.
- 4. MOOCs course link:https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

Course Designers:

Dr. P. Venkatesh pveee@tce.edu
 Dr. C.K. Babulal ckbeee@tce.edu
 Dr. S. Charles Raja charlesrajas@tce.edu

CURRICULUM AND DETAILED SYLLABI FOR

B.E. EEE DEGREE PROGRAMME

PROGRAMME ELECTIVES

FOR THE STUDENTS ADMITTED IN THE ACADEMIC YEAR 2018-19 ONWARDS

THIAGARAJAR COLLEGE OF ENGINEERING
(A Government Aided Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

B.E. Electrical and Electronics Engineering Degree Programme

LIST OF PROGRAMME ELECTIVES /PROGRAMME ELECTIVES FOR EXPANDED SCOPE

(For the students admitted from 2018-19)

S.No.	Course Code	Course Title	Credits
Electri	tems		
1.	18EEPC0 Design of Electrical Installations		
2.	18EEPD0	Smart Grid	3
3.	18EEPE0	Power System Operation and Control	3
4.	18EEPF0	Electrical Machine Design	3
5.	18EEPG0	Switchgear and Protection	3
6.	18EEPT0	Wind and Solar Technology	3
7.	18EERC0	Principles of Energy conservation	3
8.	18EERD0	Operation and Maintenance of Electrical equipment	3

S.No.	Course Code	Course Title	Credits				
Analog	g & Digital Elect	& Digital Electronic Systems					
1.	18EEPM0	Real Time Operating System	3				
2.	18EEPH0	VLSI design	3				
3.	18EEPJ0	FPGA based System Design	3				
4.	18EEPK0	Digital Signal Processing	3				
5.	18EEPL0	Biomedical Instrumentation	3				
6.	18EEPN0	Embedded Systems Design (TCP)	3				
7.	18EERG0	Industrial Electrical and Electronics	3				
8.	18EERH0	Testing & Certification of Automotive Electrical and Electronic Systems	3				
9.	18EERL0	Manufacturing of Automotive Electrical and Electronic Parts	3				

S.No.	Course Code	Course Title	Credits				
Contro	Control and Automation						
1.	18EEPA0	3					
2.	18EEPP0	Robotics	3				
3.	18EEPQ0	Automotive Electronics	3				
4.	18EEPS0	Soft Computing	3				
5.	18EEPB0	Operation Research	3				
6.	18EEPR0	Automotive Fundamentals and Manufacturing	3				
7.	18EERF0	Industrial instrumentation	3				
8.	18EERJ0	Quality Engineering	3				
9.	18EERK0	Reliability Engineering	3				

S.No.	Course Code	Course Title	Credits
Power	ower Electronics and Drives		
1.	18EEPY0	Power Quality	3
2.	18EEPU0	Drives and Control	3

3.	18EEPV0	FACTS and Custom Power Devices	3
4.	18EEPW0	HVDC Transmission	3
5.	18EEPZ0	Special Machines and Drives	3
6.	18EERA0	Power Electronics for Renewable Energy Systems	3
7.	18EERB0	Simulation of Power Electronic Systems (TCP)	3

Engineering Science Elective course

S.No.	Course Code	Course Title	Credits
1.	18EEEA0	Internet of Things	3

List of ONE / TWO credits Courses offered by Experts from Industry

S.No.	Course Code	Course Title	Credits
1	18EE1A0	Design of Power Supplies	1
2	18EE1B0	Lead Acid Battery Technology	1
3	18EE1C0	Introduction to power electronics system for xEVs	1
4	18EE1D0	Industrial control systems	1
5	18EE1E0	Thermal Power Plant Instrumentation & Control	1

18EEPD0	SMART GRID	Category	L	Т	Р	Credit
.022. 20		PE	3	0	0	3

Preamble

The course content is designed to study about smart grid technologies, distribution automation, information and communication Technologies, and operation of transmission system operation. It is used to get familiarized with smart metering and demand side integration.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the fundamentals of smart power grids and its international & Indian scenarios.	20
CO2	Calculate voltage and power loss for the given distribution system.	20
CO3	Apply demand side management concepts in advanced metering infrastructure system.	20
CO4	Apply synchrophasor measurement technology in the operation of transmission system.	20
CO5	Explain the data communication technologies used in smart grid.	10
CO6	Explain the standard communication protocols used in smart grid.	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Le	arning Don	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			•	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.1.1, 2.3.1, 3.2.3
CO2	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 3.2.3
CO3	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 3.2.3
CO4	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 3.2.3
CO5	TPS2	Understand	Respond		1.3, 2.3.1, 3.2.3
CO6	TPS2	Understand	Respond		1.3, 2.31, 3.2.3

Mapping with Programme Outcomes and Programme S	pecific Outcomes
---	------------------

Со	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	
CO 2	S	М	L					М		М			S	
CO 3	S	М	L					М		М			S	
CO 4	S	М	L					М		М			S	
CO 5	М	L						М		М			М	
CO 6	М	L						М		М			М	

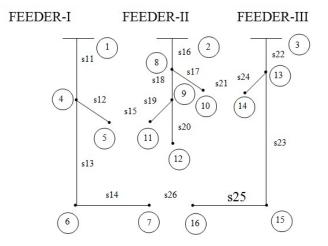
S- Strong; M-Medium; L-Low

AssessmentPattern: Cognitive Domain

, 100000 month utdom 00 g.m. 100 20 m.m.								
Cognitive	ContinuousAssessm entTests				Assignme	Terminal		
Levels	1	2	3	1	2	3	Examinati	
Remember	20	20	20	-	-	_	20	
Understand	50	60	60	50	-	-	50	
Apply	30	20	20	50	100	100	30	
Analyse	-	-	-	-	-	-	-	
Evaluate	-	-	-	-	-	-	-	
Create	-	_	-	-	-	_	-	

AssessmentPattern: Psychomotor

Psychomotor Skill	Miniproject/Assignment/Practical Component
Perception	
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-


Sample Questions for Course Outcome Assessment

Course Outcome1(CO1):

- 1. Explain smart Grid with definitions?
- 2. Describe the benefits of smart grid with respect to utility and consumer.

Course Outcome2(CO2):

1. Determine the voltage drop and power loss for the basic configuration of 16 bus distribution network under half load condition?

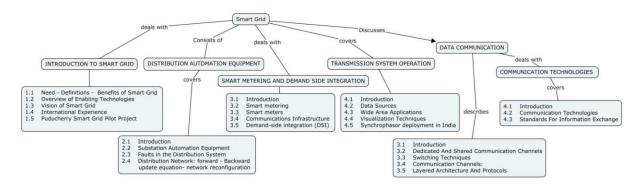
2. Explain distribution network section and automation involved in it with necessary diagram?

Course Outcome3(CO3):

- 1. Give the comparison of conventional and smart metering with a neat sketch.
- 2. Explain the functional block diagram of a smart meter with a neat sketch.

Course Outcome 4 (CO4):

- 1. Explain phasor measurement unit device and an example of PMU connection.
- 2. Explain a typical EMS system configuration with a neat sketch.


Course Outcome 5 (CO5):

- 1. Explain data transmission devices for Ethernets and transmission path with a neat sketch in detail.
- 2. Explain various data communication technology used in smart grid.
- 3. Explain in detail about ISO/OSI model.

Course Outcome6(CO6):

- 1. Explain IEEE 802 series standard, different technologies specified under this standard and architecture in detail.
- 2. Draw a basic ANSI C 12.22 smart metering architecture and explain in detail.

Concept Map

Syllabus

INTRODUCTION TO SMART GRID

Need for smart grid- Smart Grid definitions -Benefits of smart grid-Overview of enabling technologies in smart grid-vision of smart grid-International experience-smart grid demonstration and deployment efforts-Puducherry smart grid pilot project

DISTRIBUTION AUTOMATION EQUIPMENT

Introduction—Substation automation equipment: Current Transformers-Voltage Transformers- Intelligent Electronic Devices- Faults in the distribution system: Components for fault isolation and restoration – Fault location, isolation and restoration – Distribution network: forward update equation-Backward update equation- Determination of voltage, power loss, network reconfiguration for 16 bus standard distribution system

SMART METERING AND DEMAND SIDE INTEGRATION

Introduction –Smart metering: Evolution - Key components – Smart meters: over view of the hardware used-Communications infrastructure and protocols for smart metering- Demand-side integration (DSI): services -Implementations - Hardware support – Flexibility.

TRANSMISSION SYSTEM OPERATION

Introduction – Data sources: IEDs and SCADA- Phasor measurement units - Wide area applications: On-line transient stability controller-Pole-slipping preventive controller - Visualization techniques: Visual 2-D presentation-Visual 3-D presentation - Synchrophasor deployment in India

DATA COMMUNICATION

Introduction-Dedicated and shared communication channels-switching techniques: circuit switching-Message Switching- Packet switching - Communication channels - wired communication- Optical fibre- Radio communication - Cellular mobile communication-Satellite communication -Layered architecture and protocols: The ISO/OSI model-TCP/IP

COMMUNICATION TECHNOLOGIES FOR THE SMART GRID

Introduction- Communication technologies: IEEE 802 series – Mobile communications- Multi protocol label switching - Standards for information exchange: Standards for smart metering -Modbus-DNP3-IEC 61850

Learning Resources

- 1. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley & Sons Ltd., February 2012.
- 2. "Smart Grid primer", Published by Power grid Corporation of India limited, September 2013
- 3. Stuart Borlase, "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2012.
- 4. James Momoh, "Smart Grid Fundamentals of Design and Analysis", IEEE Press, 2012.
- 5. Tony Flick, Justin morehouse, "Securing the smart grid: Next generation power grid security", Elsevier, 2010.
- 6. MOOCs course link:https://www.edx.org/course/smart-grids-electricity-future-ieeex-smartgrid-x-0

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Hours	Outcome
1.0	INTRODUCTION TO SMART GRID		
1.1	Need For Smart Grid - Smart Grid Definitions - Benefits of Smart Grid	1	CO1
1.2	Overview of Enabling Technologies In Smart Grid	1	CO1
1.3	Vision of Smart Grid	1	CO1
1.4	International Experience: Smart Grid Demonstration And Deployment Efforts - Tailoring Smart Grids to Developing Countries and Emerging Economies	1	CO1
1.5	Puducherry Smart Grid Pilot Project	1	CO1
2.0	DISTRIBUTION AUTOMATION EQUIPMENT		
2.1	Introduction	1	CO2
2.2	Substation Automation Equipment: Current Transformers-Voltage Transformers- Intelligent Electronic Devices	2	CO2
2.3	Faults in the Distribution System: Components for fault isolation and restoration – Fault location, isolation and restoration	2	CO2
2.4	Distribution Network: forward update equation- Backward update equation- Determination of voltage, power loss, network reconfiguration for 16 bus standard distribution system	2	CO2
3.0	SMART METERING AND DEMAND SIDE INTEGRATION		
3.1	Introduction	1	CO3
3.2	Smart metering: Evolution - Key components	1	CO3
3.3	Smart meters: over view of the hardware used	2	CO3
3.4	Communications Infrastructure And Protocols For Smart Metering	1	CO3
3.5	Demand-side integration (DSI): services - Implementations - Hardware support – Flexibility	2	CO3
4.0	TRANSMISSION SYSTEM OPERATION		
4.1	Introduction	1	CO4
4.2	Data Sources: IEDs and SCADA- Phasor measurement units	1	CO4
4.3	Wide Area Applications: On-line transient stability controller-Pole-slipping preventive controller	1	CO4

4.4	Visualization Techniques: Visual 2-D presentation- Visual 3-D presentation	1	CO4
4.5	Synchrophasor deployment in India	1	CO4
5.0	DATA COMMUNICATION		
5.1	Introduction	1	CO5
5.2	Dedicated And Shared Communication Channels	1	CO5
5.3	Switching Techniques: circuit switching-Message Switching- Packet switching	1	CO5
5.4	Communication Channels: wired communication- Optical fibre- Radio communication – Cellular mobile communication- Satellite communication	1	CO5
5.5	Layered Architecture And Protocols: The ISO/OSI model-TCP/IP	1	CO5
6.0	COMMUNICATION TECHNOLOGIES FOR THE SMART GRID		
6.1	Introduction	1	CO6
6.2	Communication Technologies:IEEE 802 series – Mobile communications- Multi protocol label switching	2	CO6
6.3	Standards For Information Exchange: Standards for smart metering -Modbus-DNP3-IEC 61850	1	CO6
	Total	36	

Course Designers:

1. pveee@tce.edu

2. Dr.S.Charles Raja charlesrajas@tce.edu

18EEPE0

POWER SYSTEM OPERATION AND CONTROL

Category	L	Т	Р	Credit
PE	3	0	0	3

Preamble

The primary aim of a power system is to provide adequate uninterrupted supply of power of certain quality to meet all the demands of customers. The quality of the supply depends on the constancy of frequency and voltage and continuity of supply. This means that the generation must be adjusted, in real time, to match prevailing demand. The second objective, to be achieved as long as it is consistent with continuity of service and dependable operation, is to generate the required total output at minimum overall cost.

Prerequisite

18EE230 - Electric Circuit Analysis

18EE440 - Control Systems

Course Outcomes

On the successful completion of the course, students will be able to:

COs No.	Course outcomes	Weightage in %
CO1	Explain the concept of AGC and analysis of multi area system	10
CO2	Explain the real power control by frequency	20
CO3	Explain the reactive power control by voltage	10
CO4	Describe the various voltage control methods	10
CO5	Find the optimum unit commitment for a power system	15
CO6	Calculate the economic optimal load dispatch for a system comprising of 'n' thermal plants	20
CO7	Explain various operating states of a power system and control actions required to obtain secured operation	15

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Don	nain Level		CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				,
CO1	TPS3	Understand	Respond		1.3, 2.3.4, 3.2.3
CO2	TPS2	Understand	Respond		1.3, 2.3.2, 3.2.3
CO3	TPS2	Understand	Respond		1.3, 2.3.2, 3.2.3
CO4	TPS2	Understand	Respond		1.3, 2.5.4, 3.2.3
CO5	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1, 2.4.3,
					2.4.4, 3.2.3
CO6	TPS2	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1, 2.4.3,
					2.4.4, 3.2.3

007	5			40054000
((())	LIPSO	Understand	Respond	113 254 323
1 001	1 11 02	Ullucisialiu	I VESDOIIA	1.0, Z.0.4, J.Z.J

Mapping with Programme Outcomes

COs	РО	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO 1	S	М	L					М		М			S	
CO 2	М	L						М		М			М	
CO 3	М	L						М		М			М	
CO 4	М	L						М		М			М	
CO 5	S	М	L					М		М			S	
CO 6	S	М	L					М		М			S	
CO 7	М	L						М		М			М	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive		nuous ssment 1	Γests	Assignm	nent	Terminal		
Levels	1	2	3	1	2	3	Examination	
Remember	20	20	20	-	-	-	20	
Understand	30	30	30	-	-	-	30	
Apply	40	50	50	100	100	100	50	
Analyse	-	-	-	-	-	-	-	
Evaluate	-	-	-	-	-	-	-	
Create	-	-	-	-	-	-	-	

Sample Questions for Course Outcome Assessment Course Outcome 1 (CO1):

- 1. What is meant by primary ALFC loop?
- 2. Draw the dynamic response of change in frequency for a step load change.
- 3. Two generators rated 2000 MW and 4000 MW are operating in parallel. The drop characteristics of their governors are 4% and 5% respectively from no load to full load. Assuming the the generators are operating at 50Hz at no load, how would a load of 600MW be shared between them? What will be the system frequency at this load? Assume free governor operation. Also find the load sharing if both governors have a droop of 4%.

Course Outcome 2 (CO2):

- 1. What are the merits of synchronous compensator?
- 2. State the difference between P-F and Q-V control.

3. What are the methods to improve the voltage profile in the power system?

Course Outcome 3 (CO3):

- 1. What are the different types of reactive power compensation?
- 2. Discuss generation and absorption of reactive power.
- 3. Explain how voltage control can be affected by injection of reactive power.

Course Outcome 4 (CO4):

- 1. Compare series and shunt capacitors.
- 2. Explain the operation of on-load tap changing transformer.
- 3. A 414 KV line is fed through 132/415 KV transformer from a constant 132 KV supply. At the load end of the line, the voltage is reduced by another transformer of 415/132 KV. The total impedance of line is (20+j40) ohms. Both transformers are equipped with tap-changing. The product of the two off-nominal setting is unity. The load on the system is 250 MW at 0.8 p.f. lagging. Calculate the settings of the tap changer required to maintain the voltage at 132KV.

Course Outcome 5 (CO5):

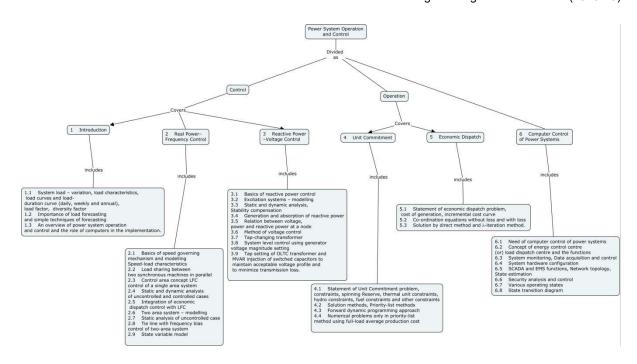
- 1. Write a few constraints in unit commitment problem.
- 2. Define spinning reserve constraint in unit commitment problem.
- 3. Explain various constraints in UC and indicate the steps involved in solving UC by DP method.

Course Outcome 6 (CO6):

- 1. Write the equality and inequality constraints considered in the economic dispatch problem.
- 2. The fuel inputs per hour of plants 1 and 2 are given as

$$F1 = 0.2 p12 + 40 P1 + 120 Rs/hr$$
.

$$F2 = 0.2 p22 + 40 P2 + 150 Rs/hr$$
.


Determine the economic operating schedule and the corresponding cost of generation if the maximum and minimum loading on each unit is 100 MW and 25 MW. Assume the transmission losses are ignored and the total demand is 180 MW. Also determine the saving obtained if the load is equally shared by both the units.

3. Formulate the co-ordination equations with losses neglected and also explain the algorithmic steps of iterative method to find the solution of co-ordination equations.

Course Outcomes 7 (C07):

- 1. Define 'network topology' in a power system.
- 2. Discuss the functions of 'SCADA' in power system operation.
- 3. Explain the various operating states of power system. Also discuss the state transitions and control strategies.

Concept Map

Syllabus

Introduction: System load – variation - load characteristics - load curves and load-duration curve (daily, weekly and annual) - load factor - diversity factor - Importance of load forecasting and simple techniques of forecasting - An overview of power system operation and control and the role of computers in the implementation.

Real Power – Frequency Control: Basics of speed governing mechanism and modelling - speed-load characteristics – load sharing between two synchronous machines in parallel - Control area concept LFC control of a single area system - Static and dynamic analysis of uncontrolled and controlled cases - Integration of economic dispatch control with LFC - Two-area system – modelling - static analysis of uncontrolled case - tie line with frequency bias control of two-area system - state variable model.

Reactive Power – Voltage Control: Basics of reactive power control - Excitation systems – modelling - Static and dynamic analysis - stability compensation - generation and absorption of reactive power - Relation between voltage, power and reactive power at a node - method of voltage control - tap-changing transformer - System level control using generator voltage magnitude setting - tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize transmission loss.

Unit Commitment: Statement of Unit Commitment problem – constraints – spinning Reserve - thermal unit constraints - hydro constraints, fuel constraints and other constraints - Solution methods - Priority-list methods - forward dynamic programming approach - Numerical problems only in priority-list method using full-load average production cost.

Economic Dispatch: Statement of economic dispatch problem – cost of generation – incremental cost curve co-ordination equations without loss and with loss - solution by direct method and λ -iteration method. (No derivation of loss coefficients).

Computer Control of Power Systems: Need of computer control of power systems - Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions - Network topology - state estimation - security analysis and control - Various

operating states (Normal, alert, emergency, in-extremis and restorative) - State transition diagram showing various state transitions and control strategies.

Learning resources

- 1. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.
- 2. V.Ramanathan, P.S.Manoharan, 'Power System Operation and Control' Third Edition, 2015, Charulatha Publications, Chennai.
- 3. Chakrabarti & Halder, "Power System Analysis: Operation and Control", Prentice Hall of India, 2004 Edition.
- 4. P.Kundur, 'Power System Stability and Control' MC Craw Hill Publisher, USA, 1994.
- 5. Olle.I.Elgerd, 'Electric Energy Systems theory an introduction' Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.
- 6. Leon K. Kirchmayer, 'Economic operation of power systems' Wiley, 2008.
- 7. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.

Course Contents and Lecture Schedule

Module No	Topic	No. of Lecture Hours	COs
1	Introduction		
1.1	System load – variation, load characteristics, load curves and load-duration curve (daily, weekly and annual), load factor, diversity factor	1	CO1
1.2	Importance of load forecasting and simple techniques of forecasting	1	CO1
1.3	An overview of power system operation and control and the role of computers in the implementation.	1	CO1
2	Real Power–Frequency Control		
2.1	Basics of speed governing mechanism and modelling Speed-load characteristics	1	CO2
2.2	Load sharing between two synchronous machines in parallel	1	CO2
2.3	Control area concept LFC control of a single area system	1	CO2
2.4	Static and dynamic analysis of uncontrolled and controlled cases	1	CO2
2.5	Integration of economic dispatch control with LFC	1	CO2
2.6	Two area system – modelling		CO2
2.7	Static analysis of uncontrolled case	1	CO2
2.8	Tie line with frequency bias control of two-area system	1	CO2
2.9	State variable model	1	CO2
3	Reactive Power–Voltage Control		
3.1	Basics of reactive power control	1	CO3
3.2	Excitation systems – modelling	1	CO3
3.3	Static and dynamic analysis, Stability compensation	1	CO3
3.4	Generation and absorption of reactive power	1	CO3
3.5	Relation between voltage, power and reactive power at a node	1	CO3
3.6	Method of voltage control	1	CO4
3.7	Tap-changing transformer	1	CO4
3.8	System level control using generator voltage magnitude setting	1	CO4
3.9	Tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and	1	CO4

	to minimize transmission loss.		
4	Unit Commitment		
4.1	Statement of Unit Commitment problem, constraints, spinning Reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints	1	CO5
4.2	Solution methods, Priority-list methods	1	CO5
4.3	Forward dynamic programming approach	1	CO5
4.4	Numerical problems only in priority-list method using full-load average production cost	1	CO5
5	Economic Dispatch		
5.1	Statement of economic dispatch problem, cost of generation, incremental cost curve	1	CO6
5.2	Co-ordination equations without loss and with loss	1	CO6
5.3	Solution by direct method and λ -iteration method. (No derivation of loss coefficients).	1	CO6
6	Computer Control of Power Systems		
6.1	Need of computer control of power systems	1	CO7
6.2	Concept of energy control centre (or) load dispatch centre and the functions	1	CO7
6.3	System monitoring, Data acquisition and control	1	CO7
6.4	System hardware configuration	1	CO7
6.5	SCADA and EMS functions, Network topology, State estimation	1	CO7
6.6	Security analysis and control	1	CO7
6.7	Various operating states (Normal, alert, emergency, in-extremis and restorative)	1	CO7
6.8	State transition diagram showing various state transitions and control strategies	1	CO7
	TOTAL	36	

Course Designers:

1. Dr.P.S.Manoharan psmeee@tce.edu

2. Dr.D.Kavitha dkavitha@tce.edu

18EEPF0	ELECTRICAL MACHINE DESIGN	Category	L	Т	Р	Credit
		PE	2	1	0	3

Preamble

This course furnishes the primary knowledge to design the main dimension and other major parts of Transformer, DC and AC rotating machines. The basic design of an electrical machine involves the dimensioning of the magnetic circuit, electrical circuit, insulation system etc., and is carried out by applying analytical equations.

Prerequisite

• 18EE320: DC machines and Transformers

• 18EE420: AC machines

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Describe the properties of various magnetic materials, conducting materials & insulating materials to fulfil the design requirements of electrical machines.	5
CO2	Calculate the mmf required for the given air gap and armature teeth.	15
CO3	Design the overall dimensions of transformer along with tank and cooling tubes for the given specifications	20
CO4	Design the main dimensions, winding details and field parameters of a DC machine for the given specifications	20
CO5	Design the main dimensions and winding details of induction machines for the given specifications	20
CO6	Design the main dimensions, winding details and field parameters of synchronous machine for the given specifications	20

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learn	ing Domain	CDIO Curricular Components			
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)		
	Scale	•		-			
CO1	TPS2	Understand	Respond		1.2, 2.3.1		
CO2	TPS3	Apply	Value		1.2, 2.1.5		
CO3	TPS3	Apply	Value		1.2, 2.1.5		
CO4	TPS3	Apply	Value		1.2, 2.1.5		
CO5	TPS3	Apply	Value		1.2, 2.1.5		
CO6	TPS3	Apply	Value		1.2, 2.1.5		

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO	РО	РО	РО	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	
CO 2	S	М	L					М		М			S	
CO 3	S	М	L					М		М			S	
CO 4	S	М	L					М		М			S	
CO 5	S	М	L					М		М			S	
CO 6	S	М	L					М		М			S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

- 100000mone: uttorni 00 9 0											
	Continuous				Assignme						
Cognitive	As	Assessment Tests				Terminal					
Levels	1	2	3	1	2	3	Examination				
Remember	10	10	10	-	-	-	10				
Understand	30	30	30	-	-	-	30				
Apply	60	60	60	100	100	100	60				
Analyse	-	-	-	-	-	-	-				
Evaluate	-	-	-	-	-	-	-				
Create	-	-	-	-	-	_	-				

Assessment Pattern: Psychomotor

Psychomotor Skill	Assignment
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

- 1. Name the various class of insulating materials with its maximum temperature limit.
- 2. Mention some of the insulating materials used in electrical machines
- 3. Classify the Insulating materials with respect to temperature and give examples for each. Course Outcome 2(CO2):
- 1. The temperature rise of a transformer is 25°C after one hour and 37.5°C after 2 hours of starting from cold conditions. Calculate its final steady temperature rise and the heating time constant. If its temperature falls from the final steady value to 40°C in 1.5 hours when disconnected, calculate its cooling time constant. The ambient temperature is 30°C.

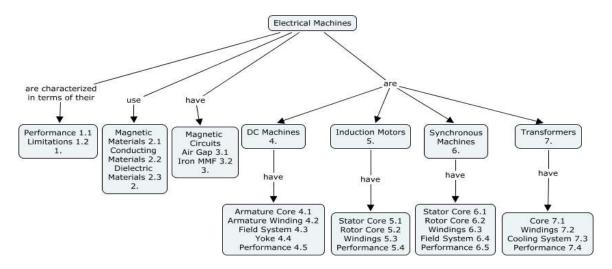
- 2. Estimate the main dimensions including winding conductor area of a 3-phase delta-star core type transformer rated at 300 kVA, 6600/440V, 50 Hz. A suitable core with 3-steps having a circumscribing circle of 0.25m diameter and leg spacing of 0.4m is available. Emf per turn 8.5 V, current density= $2.5A/mm^2$, K_w =0.28, stacking factor S_f =0.9.
- 3. Determine the main dimensions of the core of a 5kVA, 11000/400V, 50Hz, 1 phase core type distribution transformer. The net conductor area in the window is 0.6 times the net cross section area of iron in the core. The core is of square cross section, maximum flux density is 1Wb/m². Current density is 1.4A/mm². Window space factor is 0.2. Height of the window is 3 times its width.

Course Outcome 3(CO3):

- 1. The tank of 1250kVA natural oil cooled transformer has the dimensions length, width and height as 0.65*1.55*1.85 m respectively. The load loss=13.1kW, loss dissipation due to radiations 6W/m.sq-0 C, improvement in convection due to provision of tubes=40%, temperature rise is 40°C, length of each tube is 1m, diameter of each tube is 50mm. Find the number of tubes for this transformer. Neglect the top and bottom surface of the tank as regards the cooling.
- 2. A 250kVA, 6600/400V, 3-phase core type transformer has a total loss of 4800V on full load. The transformer tank is 1.25m in height and 1m*0.5m in plan. Design a suitable scheme for cooling tubes if the average temperature rise is to be limited to 35°C. The diameter of the tube is 50mm and are spaced 75mm from each other. The average height of the tube is 1.05m.
- 3. Question 3

Course Outcome 4 (CO4):

- 1. A 4 pole 50 HP de shunt motor operates with rated voltages of 480 volts at rated speed of rpm. It has wave wound armature with 770 conductors. The leakage factor of the poles is 1.2. The poles are of circular cross section. The flux density in the poles is 1.5 Wb/ m2. Compute diameter of each pole.
- 2. A 15 kW,230 V,4 pole dc machine has armature diameter=0.25m, armature core length=0.125m, length of airgap at pole centre=2.5mm, flux/pole=11.7x10-3Wb, ratio of pole arc/pole pitch=0.66. Calculate the mmf required for airgap (i)if the armature surface is treated as smooth (ii) if the armature is slotted and the gap contraction factor is 1.18.


Course Outcome 5 (CO5):

- 1. Calculate the magnetising current of a 450V, 4 pole, 3-phase, 50Hz, induction motor having the following data. No. of slots=36, No. of stator conductors/ slot=30, stator core diameter=13cm, axial length of stator=13cm, effective airgap length=0.1cm, winding is full pitched, phase spread angle is 60°, gap contraction factor=1, assume that the iron loss has infinite permeability.
- 2. Find the main dimensions of a 15kW, 3phase,400V, 50Hz, 2810rpm, sq. Cage induction motor having an efficiency of 88% and full load PF=0.9. Assume specific magnetic loading=0.5T, specific electrical loading=25000A/m. The rotor peripheral speed should be approximately 20m/s at synchronous speed.

Course Outcome 6(CO6):

- 1. Find main dimension of 100 MVA, 11 KV, 50 Hz, 150 rpm, three phase water wheel generator. The average gap density = 0.65 wb/m2 and ampere conductors / m are 40000. The peripheral speed should not exceed 65 m/s at normal running speed in order to limit runaway peripheral speed.
- 2. For a 250kVA, 1100V, 12 pole 500rpm, 3-phase 3 alternator. Determine the airgap diameter, core length, No. of stator conductors, No. of stator slots and cross section of stator conductors. Assuming average gap density as 0.6wb/sq.m. and specific electric loading of 30000 amp.cond./m. pole arc to pole pitch is 1.4.

Concept Map

Syllabus

Introduction: Performance Specifications, Standard specifications, Duty Cycle, Design factors and Limitations, Thermal and mechanical design aspects.

Materials: Properties, selection and applications of Magnetic materials, conducting materials and insulating materials.

Design of Magnetic Circuits: MMF calculation for Air gap and Teeth. Performance Calculation of Iron losses and Magnetizing current.

Design of Transformers: Design of Core and Overall dimensions. Types of Windings. Design of Tank and cooling tubes. Performance calculations of No load current, Losses and Efficiency.

Design of DC machines: Design of Armature Core. Design of Armature windings. Design of Pole and field windings. Design of Yoke.

Design of Three Phase & Single Phase Induction Motors: Design of Stator core & Rotor core. Design of Stator & Rotor windings, Insulation specifications, Performance calculations of No load current, Losses and Efficiency.

Design of Synchronous machines: Design of Stator core & Rotor core. Design of Stator and Rotor windings. Performance calculations

Learning Resources

- 1. Sawhney A.K. 'A course in Electrical Machine Design', Dhanpath rai & sons publications, 6th Edition 2010.
- 2. Rai, H.M. 'Principles of Electrical machine design' Satya Prakashan Publication New Delhi, 5th edition 2008Book2 (Author(s), Title, edition, publisher, year of publication)
- 3. S.K.Sen, 'Principles of Electrical Machine Design with Computer Programs', Oxford & IBH Publishing Co. Pvt Ltd. 2rd edition 2006.
- 4. Say. M.G.,' The Performance and Design of Alternating Current Machines', CBC Publishers and Distributers. Pvt Ltd. E book Edition 2017.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	Introduction	Hours	Outcome
1.1	Performance Specifications Design Factors, Duty Cycle,	1	CO1
1.2		1	CO1
2.0	Limitations, Thermal and mechanical design aspects Materials	I	COT
2.1	Magnetic materials	1	CO1
2.1	Conducting materials & Insulating materials	1	CO1
3.0	Design of Magnetic Circuits	I	001
3.1	MMF calculation for Air gap	2	CO2
3.2	MMF calculation for Teeth	1	CO2
3.3	Performance: Iron losses and Magnetizing current	1	CO2
4.0	Design of Transformers	I	002
4.1	Design of Core and Overall dimensions	2	CO3
4.2	Types of Windings	1	CO3
4.3	Design of Tank and cooling tubes	2	CO3
4.4	Performance: No load current , Losses and Efficiency	1	CO3
5.0	Design of DC machines	-	
5.1	Design of Armature core	2	CO4
5.2	Design of Armature windings	2	CO4
5.3	Design of Poles and filed windings	2	CO4
5.4	Design of Yoke	1	CO4
5.5	Performance: Voltage Regulation, losses and Efficiency	1	CO4
6.0	Design of Three Phase & Single Phase Induction Motors		
6.1	Design of Stator core	2	CO5
6.2	Design of Rotor core	2	CO5
6.3	Design of Stator & Rotor windings	2	CO5
6.4	Performance calculations of No load current, Losses and Efficiency.	1	CO5
7.0.	Design of Synchronous machines		
7.1	Design of Stator core	2	CO6
7.2	Design of Rotor core	2	CO6
7.3	Design of stator & rotor windings	1	CO6
7.4	Design of field systems	1	CO6
7.5	Performance calculations	1	CO6
	Total	36	

Course Designers:

1. Latha.S sleee@tce.edu

2. Nelson Jayakumar D. dnjayakumar@tce.edu

18EEPG0	SWITCHGEAR AND PROTECTION	Category	L	Т	Р	Credit
IOLLI GO	OWN ON CEAR AND I NOTE OF TON	PE	3	0	0	3

Preamble

The importance of electric supply has constructed such circumstances that we must secure the Power system from large faults and provide protection to the machineries and devices used and to ensure maximum continuity of the power supply. For this purpose, machines such as generators and motors are needed to be switched on and off many times. Means provided to achieve this are called 'Switch Gear'. Power system switchgear and protection is a subject which touches our lives every day, in a very non-intrusive manner. Reliable protection of electric energy systems against faults like short circuits is in fact, the cornerstone of power system reliability. Based on this, the course aims at giving an adequate exposure in Switchgear equipment and protection schemes for various apparatus.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage in %
CO1	Explain the layout of a typical substation and discuss its components	10
CO2	Design Circuit breakers and Fuses for a given requirement	20
CO3	Discuss the principles of different types of protective relays	20
CO4	Design a suitable protective scheme for specific faults in generator and transformers	15
CO5	Discuss the principles of various protective schemes of bus bars and feeders.	15
CO6	Design a suitable protection method for lines and apparatus against over voltages in Power Systems.	20

CO Mapping with CDIO Curriculum Framework

CO	TCE	Lear	ning Domain	CDIO Curricular	
#	Proficiency Scale	Cognitive	Affective	Psychomotor	Components (X.Y.Z)
CO1	TPS2	Understand	Respond		1.3.,2.1.1,2.3.2, 2.4.4,3.2.3
CO2	TPS3	Apply	Value		1.3.,2.1.1,2.3.1,2.3.2, 2.4.4,3.2.3
CO3	TPS2	Understand	Respond		1.3.,2.1.1,2.3.2, 2.4.4,3.2.3
CO4	TPS3	Apply	Value		1.3.,2.1.1,2.3.1,2.3.2, 2.4.4,3.2.3
CO5	TPS3	Understand	Respond		1.3.,2.1.1, 2.3.2, 2.4.4,3.2.3
CO6	TPS3	Apply	Value		1.3.,2.1.1,2.3.1,2.3.2, 2.4.4,3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	Р	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO
	1	02	3	4	5	6	7	8	9	0	1	2	1	2
CO1.	М	L						М		M			М	
CO2.	S	М	L					М		M			S	
CO3	М	L						М		М			М	
CO4	S	М	L					М		М			S	
CO5.	S	М	L					М		М			S	
CO6	S	М	L					М		М			S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests						
Levels	1	2	3	1	2	3	Terminal Examination
Remember	20	10	10			-	10
Understand	40	40	40			-	40
Apply	40	50	50	100	100	100	50
Analyse	0	0	0				0
Evaluate	0	0	0			-	0
Create	0	0	0				0

Assessment Pattern: Psychomotor

Psychomotor skill	Miniproject/ Assignment/ Practical component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	
Perception	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Compare indoor and outdoor substations.
- 2. Sketch the layout of a typical outdoor type 230KV substation and explain its major components.
- 3. Discuss the significance of instrument transformers in protective schemes.

Course Outcome 2(CO2):

- **1.** Demonstrate how breaking capacity and making capacity of a circuit breaker are tested in a laboratory type testing system.
- 2. Calculate the natural frequency of transient overvoltage when circuit breaker is

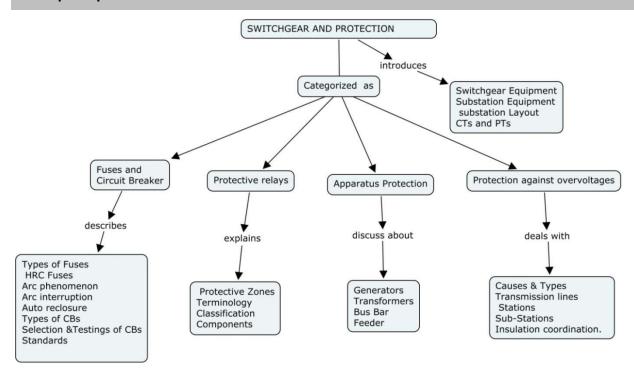
opened on fault. Assume L=0.5 Henry and C=5000pF.Also determine the natural frequency if a deliberate resistance of 10 kilo-ohms is added across the circuit breaker contacts?

Course Outcome 3(CO3):

- 1. Discuss the essential qualities of a protective relay
- 2. Explain the construction and operation of a static overcurrent relay with a neat block diagram.
- 3. Discuss the role of negative sequence relay.

Course Outcome 4(CO4):

- 1. Illustrate why the first ground fault on the rotor of Alternator does not cause any damage while a second fault can be catastrophic.
- 2. Demonstrate why conventional differential protection cannot detect interturn faults on the same phase.
- 3. A 11kV, 100 MVA generator is grounded through a resistance of 6Ω . The C.T.s have a ratio of 1000/5. The relay is set to operate when there is an out of balance current of 1A. Calculate the percentage of the generator winding that will be protected by the percentage differential scheme of protection.


Course Outcome 5(CO5):

- 1. Show the complete working of carrier-aided distance protection schemes with necessary sketches.
- 2. Choose a suitable protection scheme for the short, medium and long transmission lines against L-G fault.

Course Outcome 6(CO6):

- 1. Compute the magnitude of overvoltages due to direct and indirect lightning strokes on overhead lines.
- A 132kV, 3-phase, 50Hz transmission line 200km long contains three conductors of effective diameter 2.2 cm, arranged in a vertical plane with 4.5 m spacing and regularly transposed. Find the inductance and kVA rating of the Peterson coil in the system.
- 3. Demonstrate the fixation of B.I.L.in a power system in the context of insulation coordination.

Concept Map

Syllabus

Introduction

Switchgear - essential features - Substations - Types - Equipment - Layout of a typical substation- Current and voltage transformers for protection.

Circuit Breakers and Fuses

Circuit Breakers - Arc phenomenon - restriking and recovery voltage - resistance switching-auto re-closure. Types - air, oil, SF6 and vacuum circuit breakers - ELCB - Selection - testing of circuit breakers according to IS/IEC codes[60947 Standards for Low voltage Switchgear and Control Gears- Part II].

Fuses - Types - HRC Fuses - Characteristics and applications.

Protective relays

Need for protective systems— Protection Zones— Essential qualities of protection — Basic relay terminology - classification of protective relays based on technology and their operating principles - components of a protection system- classification of protective schemes.

Apparatus Protection

Generator - stator and rotor protection - Transformer -protection against internal faults - Bus bar protection - differential current protection -Feeder protection - Over-current, distance, pilot wire and carrier current protection.

Protection against over-voltages

Causes of over voltages – Protection of Transmission lines, Stations and Sub-Stations against direct lightning stroke - Protection against travelling waves - Peterson coil - insulation coordination.

Learning Resources

- 1. Badri Ram and D.N. Vishwakarma, "Power System Protection and Switch Gear", Tata McGraw Hill 2nd edition 2011
- 2. Lewis Blackburn, J., Thomas J. Domin, Protective Relaying Principles and Applications", 3rd edition, CRC Press, , New York, 2006.
- 3. B. Ravindranath and N.Chander, "Power System Protection and Switch Gear", New Age International Ltd., New Delhi, Reprint 2005.
- **4.** Y.G Paithankar and S.R Bhide, "Fundamentals of power system protection", Prentice-Hall of india, 2003.
- 5. Oza, Nair, Mehta and Makwana, "Power System Protection and Switchgear", Tata McGraw- Hill. .
- 6. ABB Electrical installation handbook volume 2 Electrical devices 3rd edition, June 2005 published by ABB SACE via Baioni, 35-24123, Bergamo (Italy).
- 7. Sunil S. Rao, "Protection and Switch Gear", Khanna Publishers- Revised edition, New Delhi, 2011.

Course Contents and Lecture Schedule

Module.No.	Topic	No. of Hours	Course Outcome
1.0	Introduction		
1.1	Introduction to Switchgear - essential features	1	CO1

1.2	Substations –Types of substations - Equipment- Layout of a typical substation	3	CO1
1.3	Importance of Current and Potential Transformers in protection schemes	1	CO1
2.0	Circuit Breakers and Fuses		
2.1	Arc phenomenon and principles of arc interruption - restriking voltage and recovery voltage – resistance switching– auto re-closure	3	CO2
2.2	Types of Circuit breakers – air blast, air break, oil, SF6 and vacuum circuit breakers – ELCB (Earth Leakage circuit breaker)	3	CO2
2.3	Selection and testing of circuit breakers IEC 60947 Standards for Low voltage Switchgear and Control Gears (Part II circuit breakers).	1	CO2
2.4	Fuses-Types of Fuses - HRC Fuses - Characteristics and applications	2	CO2
3.0	Protective relays		
3.1	Need for protective systems– Protection Zones– Essential qualities of protection – Basic relay terminology	2	CO3
3.2	classification of protective relays based on technology and their operating principles	3	CO3
3.3	Components of a protection system- classification of protective schemes.	2	CO3
4.0	Apparatus Protection		
4.1	Generator - stator and rotor protection Transformer – protection against internal faults	4	CO4
4.2	Bus bar protection - differential current protection - Feeder protection -Over-Current, distance, pilot wire and carrier current protection.	3	CO5
5.0	Protection against over-voltages		
5.1	Causes of over voltages	2	CO6
5.2	Protection of Transmission lines, Stations and Sub- Stations against direct lightning stroke	2	CO6
5.3	Protection against travelling waves-Peterson coil	2	CO6
5.4	Insulation coordination.	2	CO6
	Total	36	

Course Designers

K. Selvi kseee@tce.edu M.Geethanjali mgeee@tce.edu

18EEPH0	VLSI DESIGN	Category	L	Т	Р	Credit
		PE	3	0	0	3

Preamble

VLSI is a technology that can be harnessed for various applications covering analog, digital and mixed signal electronics. The current trend is to reduce the entire system design to a single chip solution called as system on chip.VLSI has become a major driving force in modern technology. It provides the basis for computing and telecommunications, and the field continues to grow at an amazing pace.

Prerequisite

18EE340- Digital Systems

Course Outcomes

On the successful completion of the course, students will be able to :

Cos	Course outcomes	Weightage***
		in %
CO1	Explain the working and characteristics of MOS transistors	20
CO2	Explain the CMOS fabrication techniques -n well, p well, Twin tub and Silicon on Insulator(SOI)	10
CO3	Estimate the functionality, timing, power, and parasitic effects of VLSI circuits.	20
CO4	Design combinational logic circuits using static CMOS Logic, Pseudo NMOS, Ratioed circuits, C²MOS, Dynamic CMOS, Domino logic.	20
CO5	Explain the Clocking schemes, I/O structure, and testing methods in VLSI circuits.	10
CO6	Simulate the Hardware Description Language(VHDL)model developed for the given digital system	20

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				
CO1	TPS2	Understand	Respond		1.3, 2.1.1, 2.3.1, 3.2.3
CO2	TPS2	Understand	Respond		1.3, , 2.1.1, 2.3.1, 3.2.3
CO3	TPS3	Apply	Value		1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1,
		· ·			2.4.4, 3.2.3
CO4	TPS3	Apply	Value		1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1,
		· ·			2.4.4, 3.2.3
CO5	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1,
					2.4.4, 3.2.3
CO6	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1, 2.4.4,

		3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L												М
CO 2	М	L												М
CO 3	S	М	L											S
CO 4	S	М	L											S
CO 5	S	М	L											S
CO 6	S	М	L		(C)									S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests			As	Terminal						
Levels	1	2	3	1	2	3	Examinati				
Remember	20	20	20	-	-	_	20				
Understand	40	40	40	-	-	-	40				
Apply	40	40	40	100	100	100	40				
Analyse	-	-	-	-	-	-	-				
Evaluate	-	-	-	ı	-	-	-				
Create	-	-	-	-	-	-	-				

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

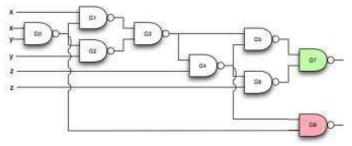
- **1.** With neat diagrams and waveforms explain the DC characteristics of a complementary CMOS Inverter & also explain its various regions of operation.
- 2. Consider the nMOS transistor in a 180nm process with a normal threshold voltage of 0.4V and doping level of 8.10¹⁷ cm⁻³. The body is tied to ground with a substrate

- contact. How much does the threshold change at room temperature if the source is at 1.1V instead of 0. Assume $t_{ox} = 40^{\circ}A$.
- 3. Analyze the Gate capacitance effect of n-channel MOSFET.

Course Outcome 2 (CO2):

- 1. Differentiate the positive and negative photo resist.
- 2. Explain N-well fabrication process with neat sketch.
- 3. List the advantages of SOI fabrication process.

Course Outcome 3 (CO3):

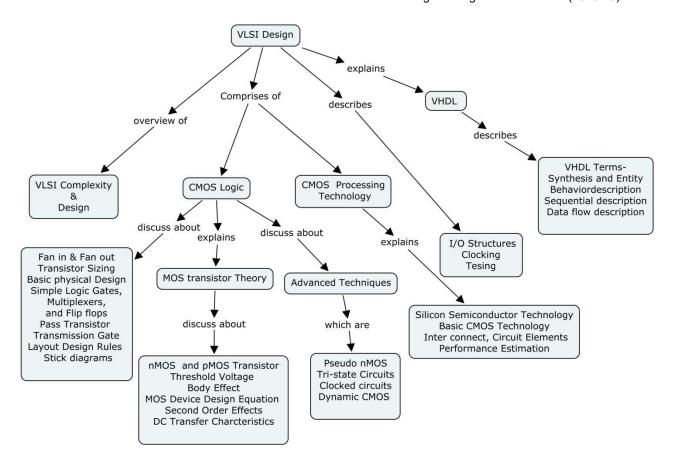

- 1. Construct the CMOS Physical layout using Lamda rule and estimate the cell width and height for given function. Consider β n =2 β P. Y = ((ABC)+D)
- 2. List the Layout Guidelines followed in designing CMOS logic gate.
- 3. An inverter uses FETs with $\beta n = 2.1 \text{mA/V}^2$ β P = 1.8 mA/V². The threshold voltage of nFET and P FET is 0.60V and -0.70V respectively. It has a value of VDD= 4V. The parasitic capacitance at output node is 74fF.
 - a) Find midpoint voltage.
 - b) Find Rn and Rp
 - c) Calculate rise and fall time when external load capacitance of 115fF is connected to the output.

Course Outcome 4 (CO4)

- 1. Draw 2 Input XOR gate using universal gate (NOR and NAND). Compare the fall time and rise time delay.
- 2. Draw the transistor level schematic of CMOS 3 input XOR gate.
- 3. Consider a 4 input NAND Dynamic circuit (f = A.B.C.D). The input voltage is set to Vin = VDD = 5V and it is given that Vtn= 0.75V. a)Draw the circuit diagram of the function. b)Suppose that the signals are initially at (A,B,C,D) = (1,1,0,0) and switched to (A,B,C,D) = (0,1,1,1). Find the value of Vout.

Course Outcome 5 (CO5)

1. For the given circuit generate test pattern using D algorithm. And also apply SCOAP for the same.



- 2. Write the advantages of bidirectional pads.
- 3. Explain PLL clocking technique with neat diagram and give its advantages.

Course Outcome 6 (CO6)

- 1. Develop the model for BCD to Excess 3 converter using VHDL.
- 2. Write VHDL Code for Ripple Counter using Dataflow modeling.
- 3. Mention any four capabilities of VHDL.

Concept Map

Syllabus

An overview of VLSI: Complexity and Design, Basic Concepts

MOS Transistor Theory: nMOS and pMOS Enhancement Transistor-Threshold Voltage and Body Effect-MOS Device Design Equation -Second Order Effects-DC Transfer Characteristics- The Complementary CMOS Inverter-Beta Ratio- Noise Margin-Ratioed Inverter Transfer function-Pass Transistor-Tristate Inverter

CMOS Processing Technology:

Silicon Semiconductor Technology- Basic CMOS Technology (N-well, P-well, Twin Tub, SOI)- Inter connect, Circuit Elements - **Performance Estimation:** Delay Estimation-Transistor Sizing-Power Dissipation-Interconnect-Design Margin.

CMOS Logic: Fan in & Fan out-Transistor Sizing-Basic physical Design of Simple Logic Gates: Inverter, NAND, NOR and Compound gates -Multiplexers and Flip flops-Pass Transistor and Transmission Gate-Layout Design Rules and Stick diagrams.

Advanced Techniques in CMOS Logic gates : Pseudo nMOS, Ratioed circuits, Tri-state Circuits, Clocked circuits, Dynamic CMOS Logic Circuits and Domino Logic Circuits.

VLSI I/O Structures Clocking and Testing of VLSI Circuits: I/O Structures, Clocked FlipFlops, CMOS Clocking Styles, Pipelined Systems, Clock Generation and Distribution. Testing of VLSI Circuits: General Concepts, CMOS Testing, Test Generation Methods.

VHDL: Introduction on VHDL & VHDL Terms - Synthesis and Entity, Behavioral description and sequential description, Data flow description.

Learning Resources

- 1. Neil H.E. Weste, David Harris & Ayan Banerjee, "CMOS VLSI Design- A Circuits and Systems Perspective", Third Edition, Pearson education, 2008.
- 2. John P. Uyemura "Introduction to VLSI Circuits and systems" John Wiley & Sons, Inc., 2008
- 3. Wayne Wolf, "Modern VLSI Design," 2nd edition, Prentice Hall PTR, 2000.
- 4. Sung Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated circuits, Analysis & Design", 3rd edition, Tata Mcgrew Hill Publishing, 2003.
- 5. J. Bhaskar, "A VHDL Primer", Third Edition, Addition Wesley, 1999.

Course Contents and Lecture Schedule

SNo.	Topic	No. of Lecture Hours	Course Outcome
1	An overview of VLSI		
1.1	Complexity and Design ,Basic Concepts	1	CO1
2	MOS Transistor Theory:		CO1
2.1	nMOS and pMOS Enhancement Transistor	1	CO1
2.2	Threshold Voltage and Body Effect	1	CO1
2.3	MOS Device Design Equation	1	CO1
2.4	Second Order Effects	1	CO1
2.5	DC Transfer Characteristics: The Complementary CMOS Inverter-Beta Ratio- Noise Margin - Ratioed Inverter Transfer function - Pass Transistor - Tristate Inverter	2	CO1
3	CMOS Processing Technology		
3.1	Silicon Semiconductor Technology	1	CO2
3.2	Basic CMOS Technology (N-well, P-well, Twin Tub, SOI)	2	CO2
3.3	Inter connect, Circuit Elements	1	CO2
4	CMOS Logic		
4.1	Fan in & Fan out-Transistor Sizing	1	CO3
4.2	Basic physical Design of Simple Logic Gates: Inverter, NAND, NOR and Compound gates	2	CO4
4.3	Multiplexers and Flip flops	1	CO3
4.4	Pass Transistor and Transmission Gate	1	CO3
4.5	Layout Design Rules and Stick diagrams	2	CO3
5	Performance Estimation:		
5.1	Delay Estimation	1	CO3
5.2	Transistor Sizing	1	CO3
5.3	Power Dissipation	1	CO3
5.4	Interconnect & Design Margin	1	CO3
6	Advanced Techniques in CMOS Logic gates		
6.1	Pseudo nMOS, Ratioed Circuits	1	CO4
6.2	Tri-state Circuits, Clocked circuits	1	CO4
6.3	Dynamic CMOS Logic Circuits	1	CO4
6.4	Dynamic CMOS and Domino Logic Circuits	1	CO4
7	VLSI I/O Structures, Clocking and Testing of VLSI		

	Circuits		
7.1	I/O Structures	1	CO5
7.1	Clocked FlipFlops & CMOS Clocking Styles	1	CO5
7.2	Pipelined Systems	1	CO5
7.3	Clock Generation and Distribution	1	CO5
7.4	Testing of VLSI Circuits - General Concepts, CMOS	2	CO5
	Testing, Test Generation Methods.		
8	VHDL		
8.1	VHDL Terms- Synthesis and Entity	1	CO6
8.2	Behavioral and sequential description	2	CO6
8.3	Data flow description	1	CO6
	Total	36	

Course Designers:

Dr.M.Saravanan mseee@tce.edu
 Dr.R.Helen rhee@tce.edu

FPGA BASED SYSTEM DESIGN	Category	L	T	Р	Credit
18EEPJ0 (THEORY CUM PRACTICAL)	PE	2	-	2	3

Preamble

This course is appropriate for all introductory-to-intermediate level courses in FPGAs, Digital designs once built in custom silicon are increasingly implemented in field programmable gate arrays (FPGAs), but effective FPGA system design requires a understanding of new techniques developed for FPGAs. This course deals FPGA fabrics, introduces essential FPGA concepts, and compares multiple approaches to solving basic problems in programmable logic.

Prerequisite

18EE340 – Digital Systems

Course Outcomes

On the successful completion of the course, students will be able to

COs	Course outcomes	Weightage
		in %
CO1	Design digital circuits using PROMs and SPLDs (PLA,PAL)	10
CO2	Describe the architecture and features of XILINX XC9500 CPLD IC	10
CO3	Explain architecture and features of SRAM, Flash and antifuse based FPGA	20
CO4	Design synchronous circuit with the same functionality of the given asynchronous circuit	10
CO5	Implement the given digital circuits in Xilinx FPGA processor using Hardware description Language experimentally	25
CO6	Develop the specific digital applications in Xilinx FPGA processor using Hardware description Language experimentally	25

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learn	ing Domain	CDIO Curricular Components			
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)		
	Scale	_		-			
CO1	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.5, 2.3.1,		
					2.4.4, 3.2.3		
CO2	TPS2	Understand	Respond		1.3., 2.1.1, 2.3.1, 3.2.3		
CO3	TPS2	Understand	Respond		1.3., 2.1.1, 2.3.1, 3.2.3		
CO4	TPS3	Apply	Value		1.3., 2.1.1, 2.1.4, 2.1.5, 2.3.1,		
					2.4.4, 3.2.3		
CO5	TPS3	Apply	Value	Mechanism	1.3, 2.1.1, 2.1.5, 2.2.2, 2.4.2,		
		-			2.4.3, 2.4.7, 3.1.1		
CO6	TPS3	Apply	Value	Mechanism	1.3, 2.1.1, 2.1.5,2.2.2, 2.4.2,		
					2.4.3, 2.4.7, 3.1.1		

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	P01	P01	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L											S
CO 2	М	L												М
CO 3	М	L												M
CO 4	S	М	L											S
CO 5	S	М	L		S			М		М				S
CO 6	S	М	L		S			М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Assessinen	i i attern. Oogi	iitive Domain			
Cognitive Levels	Con	tinuous Assessi	Practical Test	Terminal Examinatio n	
	1	2	3		
Remember	20	20	20	-	20
Understan d	40	40	40	30	40
Apply	40	40	40	50	40
Analyse	-	-	-	-	-
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

Assessment Pattern: Psychomotor

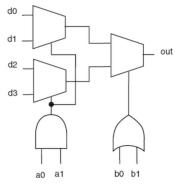
Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	20
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Explain the architecture of PLA.
- 2. Show the logic arrangement of both a PROM and a PLA required to implement a binary full adder.
- 3. Implement the following two Boolean functions with a PLA:

$$F1(A, B, C) = \sum (0,1,2,4)$$

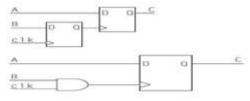

$$F2(A, B, C) = \sum_{i=0}^{\infty} 0.5, 6.7$$
.

Course Outcome 2 (CO2):

- 1. Explain the type of packages used in CPLDs
- 2. Describe the architecture of XILINX XC9500.
- 3. List the features of XILINX XC9500.

Course Outcome 3 (CO3)

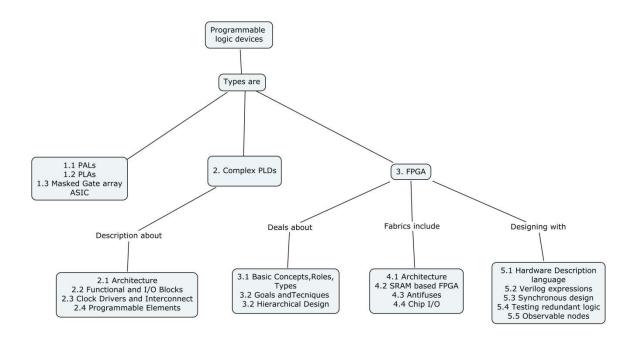
- 1. Define Design Abstraction of FPGAs.
- 2. Explain the Methodology for evaluating FPGA fabrics.
- 3. Redesign the logic element of Figure to be controlled by a0 OR a1 in the first stage and b0 AND b1 on the second stage. Draw the schematic and write the truth table.


Course Outcome 4 (CO4)

1. Determine the design problem associated with given asynchronous circuit and find its solution.

2.

Design the following circuit as synchronous:


Course Outcome 5 (CO5)

- 1. Write Verilog code using functional modeling to design a counter to count 0 to F. And display the counter output in seven segment display.
- 2. How many two-input LUTs would be required to implement a four-bit ripple-carry adder?
- 3. Design a four-input multiplexer that uses a combination of pass transistors and static gates. The first stage of multiplexing should be performed by pass transistors while the remaining multiplexing should be performed by static gates.

Course Outcome 6 (CO6)

- 1. Compare FPGA and DSP processor.
- 2. Write Verilog code for stepper motor controller.
- 3. Design of FIR Filter Using Verilog HDL.

Concept Map

Syllabus

Programmable Logic to ASICs: Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PALs), the Masked Gate Array ASIC, CPLDs and FPGAs.

Complex Programmable Logic Devices (CPLDs): CPLD Architectures, Function Blocks, I/O Blocks, Clock Drivers, Interconnect CPLD Technology and Programmable Elements.

FPGA-Based Systems: Introduction: Basic Concepts (Boolean algebra and karnaugh map), Digital Design and FPGAs, The roles of FPGAs, FPGA types, FPGA-Based System: Design, Goals & techniques, Hierarchical design, Design abstraction, Methodologies.

FPGA Fabrics: FPGA Architectures, SRAM-Based FPGAs, Characteristics of SRAM-Based FPGAs, Characteristics of SRAM-Based FPGAs, Logic elements & Interconnections networks, Chip I/O, Circuit Design of FPGA Fabrics.

Hardware Description Language: VHDL and Verilog programming.

Design Techniques, Rules, and Guidelines : Top-Down Design, Synchronous Design, Floating Nodes, Bus Contention, One-Hot State Encoding, Design For Test (DFT), Testing Redundant Logic, Initializing State Machines, Observable Nodes.

Learning Resources

- 1. Wayne Wolf "FPGA –Based System Design" Pearson Education, 2004.
- 2. Bob Zeidman, "Designing with FPGAs and CPLDs", Elsevier, CMP Books, 2002.
- 3. M. Morris Mano and Michael D. Ciletti, "Digital Design", PHI, fourth edition, 2008
- 4. R.F.Tinder: Engineering Digital Design, (2/e), Academic Press, 2000
- 5. Digital Electronics Principles, Devices and Applications Anil K. Maini Wiley 2007
- 6. Samir Palnitkar, "Verilog HDL", Pearson Education, 2nd Edition, 2004.
- 7. Stephen Brown Zvonko Vranesic "Fundamentals of Digital Logic with VHDL Design" Tata McGraw- Hill Edition.
- 8. www.xilinx.com
- 9. www.acctel.com

Course Contents and Lecture Schedule

S.No.	Topic	No. of Lectures	Course Outcome
1	Programmable Logic to ASICs		
1.1	Programmable Read Only Memories (PROMs).	1	CO1
1.2	Programmable Logic Arrays (PLAs)	2	CO1
1.3	Programmable Array Logic (PALs)	2	CO1
1.4	The Masked Gate Array ASIC	1	CO1
2	Complex Programmable Logic Devices (CPLDs)		
2.1	CPLD Architectures, Function Blocks, I/O Blocks	1	CO2
2.2	Clock Drivers, Interconnect, CPLD Technology and Programmable Elements	1	CO2
3	FPGA-Based Systems		CO2
3.1	Introduction- Basic Concepts, Digital Design and FPGAs, The roles of FPGAs and FPGA types	1	CO2
3.2	FPGA Based System Design- Design, Goals & techniques, Hierarchical design, Design abstraction, Methodologies	1	CO2
4	FPGA Fabrics		
4.1	FPGA Architectures	1	CO3
4.2	SRAM-Based FPGAs	1	CO3
4.2.1	Characteristics of SRAM-Based FPGAs	1	CO3
4.2.2	Logic elements & Interconnections networks	1	CO3
4.3	Permanently Programmed FPGAs	1	CO3
4.3.1	Antifuses, Flash configuration	1	CO3
4.3.2	Logic blocks and interconnections, Antifuse programming	1	CO3
4.4	Chip I/O, Circuit Design of FPGA Fabrics	1	CO3
5	Design Techniques, Rules, and Guidelines		
5.1	Basics of Hardware Description Language (Verilog) and Expressions	1	CO4
5.2	Top-Down Design	1	CO4
5.3	Synchronous Design	1	CO4
5.4	Floating Nodes, Bus Contention and One-Hot State Encoding	1	CO4
5.5	Design For Test and Testing Redundant Logic.	1	CO4
5.6	Initializing State Machines, Observable Nodes	1	CO4
	Total	24	

Tentative List of Experiments (24 Hours)

- 1. Construct digital circuits such as, (CO5)
 - a. Synchronous Counters
 - b. Ripple counters
 - c. 4 –Bit adder and Subtractor
 - d. Code Converters
 - e. MUX, DEMUX, Encoder and decoder
- 2. Design FPGA based (CO6)
 - a. Digital signal processing
 - b. Motor Control

Course Designers:

Dr.R.Helen rhee@tce.edu
 Dr.D.Kavitha dkavitha@tce.edu

18EEPK0

DIGITAL SIGNAL PROCESSING (THEORY CUM PRACTICAL)

Category	L	Т	Р	Credit
PE	2	-	2	3

Preamble

Digital processing of a signal has major advantage over analog techniques. With digital filters, linear phase characteristics can be achieved; Filters can be made to work over a wide range of frequencies. Storage of digital data is very easy. Digital processing is more suited for low frequency signals like seismic signals, bio signals.

Prerequisite

18EE350 - Signals and Systems

Course Outcomes

On the successful completion of the course, students will be able to

Cos	Course outcomes	Weightage*** in %
CO1	Explain the functional blocks of Digital Signal Processing system.	10
CO2	Design a FIR filter using windowing techniques (Rectangular and Hamming) for the given specifications.	20
CO3	Design an IIR filter using bilinear and impulse invariance transformation for the given specifications.	20
CO4	Explain the architecture of TMS320F67XX Digital Signal Processor.	10
CO5	Perform DFT, FFT, convolution and correlation for the given discrete sequences using CCS and Matlab	20
CO6	Analyze the perforamnce of designed FIR and IIR filters using MATLAB and DSP processor (TMS320F67XX) for the given specifications.	20

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learn	ing Domain	Level	CDIO Curricular Components
#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO2	TPS3	Apply	Value		1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO3	TPS3	Apply	Value		1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO4	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO5	TPS3	Apply	Value	Mechanism	1.3, 2.1.1, 2.1.5,2.2.2, 2.4.2, 2.4.3, 2.4.7, 3.1.1
CO6	TPS4	Analyse	Organise	Complex overt	1.3, 2.1.1, 2.1.5,2.2.2, 2.4.2, 2.4.3, 2.4.7, 3.1.1

_				
			response	

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO	РО	РО	РО	РО	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				M
CO 2	S	М	L					М		М				S
CO 3	S	М	L					М		М				S
CO 4	М	L						М		М				M
CO 5	S	М	L		S			М		М				S
CO 6	S	S	М	L	S			М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

	C	ontinuous As	sessment Tes	ts Prac	ctical	
Cognitive Levels	1	2	3	To	est	Terminal Examination
Remember	20	20	10		- 20	
Understand	40	40	20		- 40)
Apply	40	40	60	5	0 40)
Analyse	-	-	-	30	0	-
Evaluate	-	-	-		-	-
Create	-	-	_		-	_

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	20
Complex Overt Responses	
Adaptation	
Origination	

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Draw the block diagram of digital signal processing system.
- 2. Consider the analog signal X(t)= 3cos 100 π t. Determine the minimum sampling rate to avoid aliasing.
- 3. What is the nyquist rate for the given signal, $x(t) = 2sin400\pi t + cos1000\pi t$.

Course Outcome (CO2):

- 1. Write the Hamming window function.
- 2. Design a filter with the following specifications,

$$H(e^{j\omega}) = 1 \qquad -\frac{\Pi}{\frac{14}{4}} \le |\omega| \le \frac{\Pi}{4}$$
$$= 0 \qquad \frac{\Pi}{4} \le |\omega| \le \Pi.$$

Use hamming window with N=7. Realize its structure.

3. Using the rectangular window technique design a LPF with passband gain of unity, cutoff frequency of 1000Hz and working sampling frequency of 5kHz. The length of impulse be 7.

Course Outcome (CO3)

1. Design a digital filter for the given analog system, $H_a(s) = \frac{2}{(s+1)(s+4)}$.

Use a) impulse invariance method b) bilinear transformation method.

2. Design a bandpass filter to pass frequencies in the range,

w= 1-2 rad/sec using hamming window with N=5. Realize using direct form-II structure.

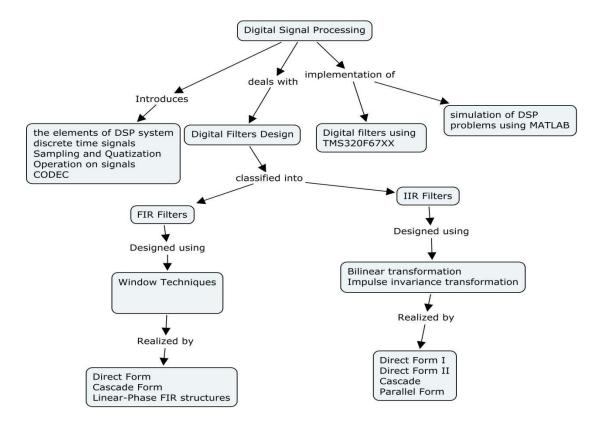
3. Design a Chebyshev filter for the following specification using bilinear transformation and realize using cascade form.

$$0.8 \le ||He^{j\omega}|| \le 1$$
 $0 \le ||\omega|| \le 0.2\pi$ $||He^{j\omega}|| \le 0.2$ $0.6\pi \le ||\omega|| \le \pi$

Course Outcome (CO4)

- 1. Discuss the are the advantages of floating point DSP.
- 2. Explain functional block and CPU of TMS320f67XX DSP.
- 3. Explain PLL and PLL controller of TMS320f67XX DSP.

Course Outcome (CO5)


- 1. Determine the output response y(n) if $h(n)=\{1,1,1\}$; $x(n)=\{1,2,3,1\}$ by using linear convolution, circular convolution and circular convolution with zero padding. And compare the linear and circular convolution using matlab.
- 2. Using matlab design a bandstop butterworth filter to meet the following specifications. Stopband 100 to 600 Hz, 20dB attenuation at 200 to 400Hz, The passband attenuation is 3dB and stopband attenuation is 20dB.
- Compute 4-point DFT for given sequences and also obtain the graphical display using CCS. x(n)={2,5,3,1}

Course Outcome (CO6)

- 1. Design and realize a 25 tap BSF with cut off frequency 0.25π and 0.75π using hanning window using TMS320F67XX..
- 2. Design a butterworth filter that has a -2dB passband attenuation at a frequency of 20rad/sec and atleast -10dB stopband attenuation at 30rad/sec and assume the sampling frequency using TMS320F67XX..
- 3. Design a Chebyshev filter for the following specification using TMS320F67XX.

$$0.8 \le |Hej\omega| \le 1$$
 $0 \le \omega \le 0.2\pi$
 $|Hej\omega| \le 0.2$ $0.6\pi \le \omega \le \pi$

Concept Map

Syllabus

Introduction: Basic elements of a digital signal processing system – Advantages of digital over analog signal processing – Continuous time verses discrete time signals – Sampling of analog signals –Quantization of continuous amplitude signals –Introduction on CODEC.

Digital Filters Design: Properties and Structures of FIR and IIR filter – Design of FIR filter using windows – Design of IIR filter from analog filters using bilinear and impulse invariance transformation.

Realization of Digital Filters: Realization of FIR filters (Direct Form, Cascade Form, Linear-Phase FIR structures) and IIR filters (Direct Form I, Direct Form II, Cascade and Parallel Form) - Applications

Architecture: TMS320F67XX floating point DSP architectures, CPU, memory, buses and peripherals. Addressing modes, instruction sets, control operations, interrupts.

List of Experiments:

- 1. Discrete Time Sequences Generation, Concept of Aliasing and operations using CCS and Matlab (CO5)
- 2. Convolution and Correlation using CCS and Matlab (CO5)
- 3. FIR Filter Design using CCS and Matlab (CO5)
- 4. IIR Filter Design using CCS and Matlab (CO5)
- 5. Implementation of FIR and IIR filters on TMS320C67XX (CO6)

Learning Resources

1. John G.Proakis & Dimitris G.Manolakis, - Digital Signal Processing Principles, Algorithm and Applications – Pearson Education, New Delhi, 4th Edition, 2003.

- 2. P.Ramesh Babu Digital Signal Processing, Scitech Publications of India, 2012.
- 3. Emmanuel C. Ifeachor & Barrie W. Jervis Digital Signal Processing A practical approach, Pearson Education, New Delhi, 2004.
- 4. A.V. Oppenheim and R.W.Schafer Digital Signal Processing, Prentice Hall of India, 2001.
- 5. Sanjit K.Mishra Digital Signal Processing-A computer based approach, Tata McGraw-Hill, New Delhi, 2004.

Course Contents and Lecture Schedule

Module No.	Topic	No. of Lecture Hours	Course Outcome
1	Introduction		
1.1	Basic elements of a digital signal processing system	1	CO1
1.2	Advantages of digital over analog signal processing	1	CO1
1.3	Continuous time verses discrete time signals	1	CO1
1.4	Sampling of analog signals	1	CO1
1.5	Quantization of continuous amplitude signals	2	CO1
2	Digital Filters		
2.1	Properties and Structures of FIR and IIR filter	1	CO2
2.2	Design of FIR filter using windows	3	CO2
2.3	Design of IIR filter from analog filters using bilinear and impulse invariance transformation	3	CO3
2.4	Realization of Digital Filters		
2.4.1	Realization of FIR (Direct form I, Direct form II, Cascade and parallel form)	2	CO2
2.4.2	Realization of IIR filters(Direct form I, Direct form II, Cascade and parallel form)	2	CO3
2.4.3	Applications	1	CO3
3	Architecture of TMS320F67XX		
3.1	TMS320F67XX floating point DSP architectures,	2	CO4
3.2	CPU, memory, buses and peripherals.	2	CO4
3.3	Addressing modes, instruction sets, control	2	CO4
	operations, interrupts.		
	Total	24	

Course Designers:

1. Dr.L.Jessi Sahaya Shanthi

ljseee@tce.edu

2. Dr.R.Helen

rheee@tce.edu

18EEPL0	BIO-MEDICAL INSTRUMENTATION	Category	L	Т	Р	Credit
		PE	3	ı	ı	3

Preamble

Biomedical instrumentation is the application of engineering principles and design concepts to medicine and biology. This field seeks to close the gap between engineering and medicine. It combines the design and problem solving skills of engineering with medical and biological sciences to improve healthcare diagnosis, monitoring and therapy. This subject will enable the students to learn the basic principles of different instruments/equipment used in the health care industry.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the principles of biomedical measurement systems and its characteristics, standards, safety and regulation.	10
CO2	Design the diagnostic devices to measure the Bio electric signals (ECG, EEG, and EMG)	20
CO3	Explain the Biomedical instrumentation system used to measure Blood Flow, Blood Pressure, Heart sound, Respiratory system and Blood cell counters	20
CO4	Explain the working principle and operation of therapeutic devices like pacemakers, defibrillators, audiometer.	10
CO5	Describe the principle and construction of medical imaging systems like MRI, CT for diagnosing applications.	20
CO6	Analyze characteristics of real world electrophysiological signals and medical images using MATLAB.	20

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learr	ning Domain	CDIO Curricular Components	
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			-	
CO1	TPS2	Understand	Respond		1.2.7, 2.1.1, 2.3.1, 2.5.1,
			-		2.4.6, 3.2.3
CO2	TPS3	Apply	Value		1.2.7, 2.1.1, 2.1.5, 2.3.1,
					2.4.4, 3.2.3
CO3	TPS2	Understand	Respond		1.2.7, 2.1.1, 2.4.4, 2.3.1,

				3.2.3
CO4	TPS2	Understand	Respond	1.2.7, 2.1.1, 2.1.5, 2.3.1,
				2.4.4, 3.2.3
CO5	TPS2	Understand	Respond	1.2.7, 2.1.1, 2.4.4, 2.3.1,
				3.2.3
CO6	TPS4	Analyse	Organise	1.2.7, 2.1.1, 2.1.4, 2.1.5,
		·	_	2.3.1, 2.4.4, 3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO	PO	РО	РО	РО	PO	РО	PO	PO1	PO1	PO1	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	М	L						M		М				M
1														
CO	S	M	L					M		M				S
2														
CO	М	L						M		М				M
3														
CO	S	М	L					М		М				S
4														
CO	М	L						М		М				М
5														
CO	_	N 4			N 4			М		М				S
6	3	IVI	L		IVI									
CO	S	М	L		М			М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	As	Continuo sessment		As	Terminal		
Levels	1	2	3	1	2	3	Examinati
							on
Remember	20	20	20	-	-	•	20
Understand	50	50	40	-	-	•	40
Apply	30	30	40	•	-	•	40
Analyse	-	-	-	100	100	100	-
Evaluate	-	-	-	-	-	ı	-
Create	-	-	-	ı	-	1	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Define macro and micro shock.
- 2. Write the importance of Testing, maintaining and inspecting medical equipment.
- 3. Explain the impact of leakage Current in cardiac patient.

Course Outcome 2(CO2):

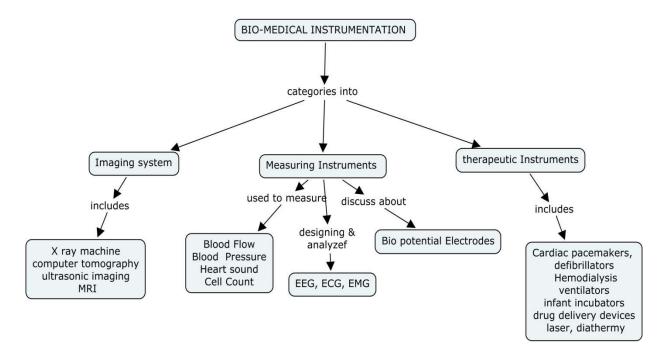
- 1. List the types of brain waves and specify its magnitude and frequency.
- 2. Illustrate the standard 10-20 electrode system for recording the spontaneous EEG with neat diagram.
- 3. Design a system to Record the Cardiac Signal.

Course Outcome 3 (CO3):

- 1. Explain electromagnetic blood flow meter.
- 2. Explain with diagram the salient features of Phonocardiography
- 3. Describe a method for the measurement of total lung capacity.

Course Outcome 4 (CO4):

- 1. Design an external pacemaker.
- 2. With necessary sketches explain different types of Ventilators
- 3. Explain the operation of the Heart Lung Machine. Give its applications..


Course Outcome 5 (CO5):

- 1. Classify the X-rays and with neat diagram explain the function X-Ray machine.
- 2. Explain the principle of Magnetic Resonance imaging systems.
- 3. Describe the various scanning methods in ultrasonic imaging system.

Course Outcome 6 (CO6):

- 1. Analyze the Sleep pattern of EEG signal using matlab.
- 2. Using matlab analyze the abnormalities of ECG signal.
- 3. Using matlab analyzes the different digital filtering techniques for removing noise in the medical images

Concept Map

Syllabus

BASIC CONCEPTS OF BIO MEDICAL INSTRUMENTATION: Terminology – Generalized medical instrumentation system – Measurement Standards -Regulation of medical devices – Electrical safety in medical environment.

BIO POTENTIALS AND MEASUREMENTS: Electric activity and excitable cells – Functional organization of peripheral nervous system. EMG, ECG, EEG – Bio-potential electrodes- Electrodes for electric simulation of tissues – Practical hints for using electrodes.- Computer analysis of real world ECG & EEG signals

BLOOD FLOW- Electromagnetic blood flow meter, ultrasonic blood flow meter, Doppler blood flow meter cardiac output measurement. **BLOOD PRESSURE AND HEART SOUND MEASUREMENT**: Indirect and direct Measurement of blood pressure Phonocardiograph. **BLOOD CELL COUNTERS**: Different methods for cell counting, Coulter Counters, automatic recognition and differential counting of cells. **RESPIRATORY MEASUREMENT**: Lung Volume measurement, Plethysmography

THERAPEUTIC DEVICES: Cardiac pacemakers, defibrillators, audiometer, Heart Lung Machine, Haemodialysis, ventilators, infant incubators, drug delivery devices, therapeutic applications of the laser, diathermy

MEDICAL IMAGING SYSTEMS: X ray machine, computer tomography, ultrasonic imaging system, magnetic resonance imaging system, thermal imaging system, positron emission tomography, medical image processing.

Learning Resources

- 1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", McGraw Hill Education; Third edition (4 August 2014)
- 2. J.Webster, "Medical Instrumentation application and design", third edition Wiley & Sons 2001.
- 3. Carr & Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia; 4th Edition, 2001
- 4. Leslie Cromwell, "Biomedical Instrumentation and Measurements", Pearson Education India; 2 edition (2015)

Course	Contents and	d Lecture	Schedule
Ourse	oonicing and	a Eccluse	Ochedule

Module	Topics		Course
No.			outcomes
1	BASIC CONCEPTS OF BIO MEDICAL INSTRUMENTATION		
1.1	Terminology – Generalized medical instrumentation system	1	CO1
1.2	Measurement Standards	1	CO1
1.3	Regulation of medical devices	1	CO1
1.4	Electrical safety in medical environment	1	CO1
2	BIO POTENTIALS AND MEASUREMENTS		
2.2	Electric activity and excitable cells	1	CO2
2.3	Functional organization of peripheral nervous system.	1	CO2
2.4	EMG, ECG	2	CO2
2.5	EEG	1	CO2

2.6	Bio-potential electrodes ,Electrodes for electric simulation of	2	CO2
2.0	tissues		
2.7	Practical hints for using electrodes	1	CO2
2.8	Computer analysis of real world ECG & EEG signals	2	CO6
3	BLOOD FLOW		
3.1	Electromagnetic blood flow meter	1	CO3
3.2	ultrasonic blood flow meter	1	CO3
3.3	Doppler blood flow meter cardiac output measurement	1	CO3
3.4	BLOOD PRESSURE AND HEART SOUND MEASUREMENT:		CO3
3.4.1	Indirect Measurement of blood pressure Phonocardiograph	1	CO3
3.4.2	direct Measurement of blood pressure Phonocardiograph	1	CO3
3.5	BLOOD CELL COUNTERS: Different methods for cell counting, Coulter Counters	1	CO3
3.5.1	Automatic recognition and differential counting of cells.	1	CO3
3.6	RESPIRATORY MEASUREMENT: Lung Volume measurement,	1	CO3
3.6.1	Plethysmography	1	CO3
4	THERAPEUTIC DEVICES		
4.1	Cardiac pacemakers, defibrillators, Audiometer	2	CO4
4.2	Heart Lung Machine , Haemodialysis, ventilators	2	CO4
4.3	Infant incubators, drug delivery devices,	1	CO4
4.4	Therapeutic applications of the laser, Diathermy	1	CO4
5	MEDICAL IMAGING SYSTEMS		
5.1	X ray machine, computer tomography,	2	CO5
5.2	Ultrasonic imaging system, Magnetic Resonance Imaging system,	2	CO5
5.3	Thermal imaging system, positron emission tomography	1	CO5
5.4	Medical image processing using maltab	2	CO6
	Total	36	

Course Designers:

1.	Dr.R.Helen	rheee@tce.edu
2.	Dr. B.Ashok Kumar	ashokudt@tce.edu
3.	Mrs. R.Suganya	rsaeee@tce.edu

18EEPP0	ROBOTICS	Category	L	Т	Р	Credit
		PE	3	0	0	3

Preamble

Robots are becoming back bone of modern day industries. Knowledge of robotics is a mandate even for electrical engineers This course is framed with the idea of inculcating the knowledge of robot anatomy, coordinate frames, mapping and transforms, direct kinematic modelling of robots and inverse kinematics, dynamic modelling, trajectory planning, control of manipulators, robotic sensors and vision.

Prerequisite

- 18EE440 Control systems
- 18MA210 Matrices and Ordinary Differential Equations

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the anatomy of robot, coordinate frames, mapping and transformations	20
CO2	Develop forward kinematic model of a robot manipulator	20
CO3	Develop inverse kinematic model and dynamic model for a given Robotic manipulator	20
CO4	Use Joint Space techniques and Cartesian space techniques for trajectory planning	20
CO5	Explain the role of sensors and controllers in Robotics	10
CO6	Use roboanalyser software to simulate the dynamics of the given manipulator	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learr	ning Domaii	n Level	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale	_		-	
CO1	TPS2	Understand	Respond		1.3, 2.1.1
CO2	TPS3	Apply	Value		1.3, 2.1.2, 2.1.3, 4.1.4
CO3	TPS3	Apply	Value		1.3, 2.1.2, 2.1.3,4.1.4
CO4	TPS3	Apply	Value		1.3, 2.1.2,2.1.3,4.1.4
CO5	TPS2	Understand	Respond		1.3, 2.1.1
CO6	TPS3	Apply	Value		1.3, 2.1.2,2.1.3,4.1.4

Mapping with Programme Outcomesand Programme Specific Outcomes

Со	РО	РО	РО	PO	РО	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	S	М	L					М		М				S
CO 3	S	М	L					М		М				S
CO 4	S	М	L					М		М				S
CO 5	М	L						М		М				М
CO 6	S	М	L		М			М		М				S

S- Strong; M-Medium; L-Low

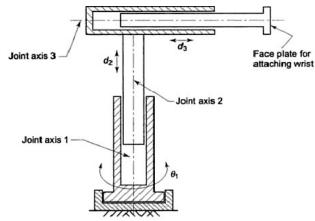
AssessmentPattern: Cognitive Domain

Cognitive	ContinuousAssessmen tTests				Terminal		
Levels	1	2	3	1	2	3	Examinatio
							n
Remember	20	20	20	-	-	-	20
Understand	40	20	40	-	-	-	30
Apply	40	60	40	100	100	100	50
Analyse	-	-	-	-	-	-	1
Evaluate	-	-	-	-	-	-	-
Create	_	-	-	-	-	-	-

CO6 is evaluated through assignments.

AssessmentPattern: Psychomotor

Psychomotor Skill	Miniproject/Assignment/Practical Component				
Perception					
Set					
Guided Response					
Mechanism					
Complex Overt Responses					
Adaptation					
Origination					


Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Explain about degrees of freedom and dexterous robots.
- 2. A vector OP defined in the reference frame {0} is [1 2 3]T. Origin of frame is displaced by +2units along y axis and +3 units along z axis. Frame {0} is then rotated about z axis by 90 degree and about x axis by -90 degree. Find the vector OP w.r.t the transformed frame. (Understand)

Course Outcome 2 (CO2):

- 1. Determine the forward kinematics of DOF RR Robot
- 2. Calculate the forward kinematics model of the cylindrical arm shown below:

Course Outcome 3 (CO3):

- 1. Determine the inverse kinematics of DOF PP Robot Arm.
- 2. Calculate the dynamic model of RR 2DOF manipulator.

Course Outcome 4 (CO4):

- 1. A single cubic trajectory is given by $\theta(t) = 10 + 90t^2 60t^3$ and is used over time interval from t = 0 to t = 1. Calculate the starting and final position, velocity and acceleration.
- 2. Determine the trajectory of pick and place robot which has to pass through three viapoints using piecewise linear interpolation with parabolic blends for each segment. The path points are [0 10 45 30 5] degrees and travel times for the segments are [0.5 1.5 2.0 1.0] seconds respectively. Assume the magnitude of acceleration at each parabolic blend is 25 degree / sec^2

Course Outcome 5 (CO5):

- 1. Consider a manipulator with linear, second order dynamic model $\tau = I\ddot{\theta} + B\theta$, where I is the total inertia and B is the total friction. Design suitable partitioned control scheme to achieve the error dynamics $\ddot{e} + 4\dot{e} + 4e = 0$
- 2. With a neat diagram explain the architecture of robotic vision system Course Outcome 6 (CO6):
- 1. Simulate the inverse kinematics of DOF PP robot arm using roboanalyser software
- 2. Simulate the forward kinematics of DOF RR robot.

Concept Map

Syllabus

Introduction to Robotics: Basics of Robots, Progressive advancement in Robots, ApplicationsRobot anatomy, Manipulation and Control, Introduction to mobile robots

Coordinate frames, Mapping and Transforms: Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation)

Direct kinematic model

Mechanical structure and notations, Description of links and joints, Kinematic modeling of manipulator, Denavit-Hartenberg notation

Inverse kinematics(Limited to 3DOF robots) and dynamic modeling (Limited to 2DOF robots):

Inverse kinematics- Manipulator workspace, Solution techniques and closed form solution, Dynamic modeling of two degree of freedom manipulator

Trajectory planning: Definitions and planning tasks, Joint space techniques, Cartesian space techniques

Control of manipulators: The manipulator control problem, Linear second-order SISO model of manipulator, Joint actuators- stepper motor, servo motor, PID control scheme, Force control

Robotic sensors and vision: Robotic sensors and its different kinds, Architecture of robotic vision system, Description of components of vision system.

Robot Software: Introduction to robot programming languages. Computer aided analysis of robots (using roboanalyzer software)

Learning Resources

- 1. R.K. Mittal, I.J. Nagrath, Robotics and control, Tata McGraw-Hill, 2003.
- 2. John J.Craig, Introduction to Robotics, Mechanics and control, third edition, Pearson education, 2005
- 3. Mark W.Sponge, M.Vidyasagar, Robot dynamics and control, Wiley India, 2009.
- 4. KS Fu, Ralph Gonzalez CSG Lee, Robotics, John wiley, 2002.
- 5. Nptel Course on, "Robotics", by IIT Kharagpur, https://nptel.ac.in/courses/112105249/
- 6. http://www.roboanalyzer.com/tutorials.html

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Hours	Outcome
1.0	Introduction		
1.1	Basics of Robotics, Progressive advancement in Robots	1	CO1
1.2	Robot anatomy	1	CO1
1.3	Manipulation and control, Introduction to mobile robots	1	CO1
2.0	Coordinate frames, Mapping and Transforms		
2.1	Coordinate frames	1	CO1
2.2	Description of objects in space	1	CO1
2.3	Transformation of vectors	2	CO1
2.4	Fundamental rotation matrices (principal axes and fixed angle rotation)	2	CO1
3.0	Direct kinematic model,		
3.1	Mechanical structure and notations	1	CO2
3.2	Description of links and joints	2	CO2
3.3	Kinematic modeling of manipulator	3	CO2
3.4	Denavit-Hartenberg notation	2	CO2
4.0	Inverse kinematics and dynamic Modeling		

4.1	Inverse kinematics- Manipulator workspace	2	CO3
4.2	Solution techniques and closed form solution	2	CO3
4.3	Dynamic modeling of two degree of freedom manipulator	2	CO3
4.0	Trajectory planning		
4.1	Definitions and planning tasks	1	CO4
4.2	Joint space techniques	2	CO4
4.3	Cartesian Space techniques	1	CO4
5.0	Control of manipulators		
5.1	The manipulator control problem	1	CO5
5.2	Linear second-order SISO model of manipulator	1	CO5
5.3	Joint actuators- stepper motor, servo motor	1	CO5
5.4	PID control scheme	1	CO5
6.0	Robotic sensors and vision		
6.1	Robotic sensors and its different kinds	1	CO5
6.2	Architecture of robotic vision system	1	CO5
6.3	Description of components of vision system	1	CO5
7.0	Robot software		
7.1	Introduction to robot programming languages	1	CO6
7.2	Computer aided analysis of robots (using roboanalyzer software)	2	CO6
	Total	36	

Course Designers:

Mr.M.Varatharajan varatharajan@tce.edu
 Dr.D.Kavitha dkavitha@tce.edu
 Mrs.R.Suganya rsaeee@tce.edu

18EEPQ0	AUTOMOTIVE ELECRTONICS	Category	L	Т	Р	Credit
		PE	3	0	0	3

Preamble

This course covers the fundamentals of vehicle electrical and electronic system, components and sub systems. It discusses working principle of sensors and actuators, concepts of diagnostics and communication protocols, and gives exposure to Quality, Reliability and Safety aspects.

Prerequisite

18EE340 - Digital Systems

18EE430 - Measurements& Instrumentation

Course Outcomes

On successful completion of the course, students will be able to

No.	Course Outcomes	Weightage*** in %
CO1	Explain the vehicle electrical and Electronic systems and their components	20
CO2	Explain the working of electrical and electronic subsystems	20
CO3	Explain the working principles of sensors and actuators in automotive	20
CO4	Determine sensors and actuator outputs under given operating conditions	20
CO5	Explain the concepts of diagnostics and communication protocols	10
CO6	Explain the Quality, Reliability and Safety aspects of automotive electrical and electronic system requirements	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain	Level		CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale				(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.3.1,3.2.3
CO2	TPS2	Understand	Respond		1.3,2.3.1, 3.2.3
CO3	TPS2	Understand	Respond		1.3 ,2.3.1, 3.2.3
CO4	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1,
		-			2.4.4,

CO5	TPS2	Understand	Respond	1.3 ,2.5.4, 3.2.3
CO6	TPS2	Understand	Respond	1.3, 3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	РО	PO	РО	PO1	PO1	PO1	PSO	PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	М	L						М		М				М
CO2	М	L						М		М				М
CO3	М	L						М		М				М
CO4	S	M	L					М		М				S
CO5	М	L						М		М				М
CO6	М	L						М		М				М

S- Strong; M-Medium; L-Low

Assessment Pattern: : Cognitive Domain

Cognitive		ontinud ssessm	ous nent Tests	Assi	gnment	Terminal	
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	-	-	-	20
Understand	60	60	60	-	-	-	60
Apply	20	20	20	100	100	100	20
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Explain working of ignition system with neat diagram.
- 2. Describe the operation of Anti-lock Braking System in an automotive.
- 3. Explain the functions of engine management system in detail.

Course Outcome 2 (CO2):

- 1. Discuss the automobile headlamp electric circuit with all possible modes.
- 2. Explain the function of starting system with neat diagram.
- 3. Discuss the requirement of wiring harness in an automobile.

Course Outcome 3 (CO3):

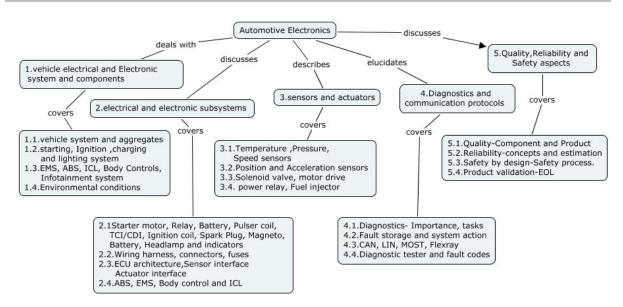
- 1. Explain the working of oil pressure sensor with neat diagram.
- 2. Describe the working principle of Hall Effect sensor to measure the crankshaft position.
- 3. Explain the operation of fuel injector with neat diagram.

Course Outcome 4 (CO4):

1. Assume that the temperature of the coolant in an automotive is increasing and it is measured by thermistor. The sensor is supplied with 12 V. Determine the fixed

resistance used, if the sensor variable resistance decreases from 8 ohm to 2 ohm for an output voltage increase from 4V to 8V.

- 2. Determine the engine load of a vehicle when the fuel injector pulse timing is 30 msec and the duty cycle is 10%.
- 3. Determine the pulse counter output of an engine speed sensor for 4 minutes when an eight cylinder engine is running at 5000 rpm..


Course Outcome 5 (CO5):

- 1. Discuss the features of On Board Diagnostics II (OBD-II) in detail.
- 2. Define freeze frame parameters.
- 3. Explain the CAN bus in detail.

Course Outcome 6 (CO6):

- 1. Define MTBF.
- 2. Describe the process of Failure Mode and Effects Analysis.
- 3. Discuss the five phases of Product Quality Planning.

Concept Map

Syllabus

Vehicle Electrical and Electronic system and components: Overview of vehicle system and aggregates, Schematic diagram of automotive electrical system - function of starting system, Ignition system, charging system and lighting system -Schematic diagram of electronic system-Function of EMS, ABS, ICL, Body Controls, Infotainment system-Environmental conditions: Electrical and operating-key requirements of automotive systems.

Electrical and Electronic Subsystems: Starter motor, Relay, Battery, Pulser coil, TCI/CDI, Ignition coil, Spark Plug, Magneto, Battery, Headlamp and indicators- Requirements of Wiring harness, connectors, fuses-ECU architecture-Sensor interface-Actuator interface-Automotive Electronic Application - ABS, EMS, Body control and ICL.

Sensors and Actuators: sensors-Temperature, Pressure, Speed, Position and Acceleration- actuator-Solenoid valve, motor drive, power relay, Fuel injector.

Diagnostics and Communication protocols: Diagnostics- Importance, tasks, Fault storage and system action-Communication networks-CAN, LIN, MOST, Flexray-communication protocols- KWP2000, OBD-II-Diagnostic tester and fault codes

Quality, Reliability and Safety aspects: Quality-Component and Product-Reliability-concepts and estimation-Safety by design-Safety process-Product validation-EOL.

Learning Resources

- 1) Ronald K Jurgen, "Automotive Electronics Handbook", Tata McGraw Hill, 1999.
- 2) Robert Bosch, "Automotive Electrics and Automotive Electronics", GmbH, 2007.
- 3)Tom Denton, "Automobile Electrical and Electronics Systems", Elsevier Publications, 2004
- 4) Ronald K Jurgen, "Automotive Microcontrollers", Progress in technology, 2008.

Course Contents and Lecture Schedule

Module No.	Topic	No. of Lecture hours	СО
1.0	Vehicle Electrical and Electronic system and components		
1.1	Overview of vehicle system and aggregates, Schematic diagram of automotive electrical system	2	CO1
1.2	function of starting system, Ignition system, charging system and lighting system	3	CO1
1.3	Schematic diagram of electronic system- Function of EMS, ABS, ICL, Body Controls, Infotainment system	2	CO1
1.4	Environmental conditions: Electrical and operating - key requirements of automotive systems.	1	CO1
2.0	Electrical and Electronic Subsystems		
2.1	Working principle of Starter motor, Relay, Battery, Pulser coil, TCI/CDI, Ignition coil, Spark Plug, Magneto, Battery, Headlamp and indicators	3	CO2
2.2	Requirements of Wiring harness, connectors, fuses	1	CO2
2.3	ECU -Sensor interface-Actuator interface	2	CO2
2.4	Automotive Electronic Application - ABS, EMS, Body control and ICL	2	CO2
3.0	Sensors and Actuators		
3.1	Working principle of sensors-Temperature ,Pressure, Speed	3	CO3
3.2	Position and Acceleration sensors	1	CO3
3.3	Working principle of actuator-Solenoid valve, motor drive,	2	CO3
3.4	power relay, Fuel injector	2	CO3
3.5	Determination of sensors and actuator outputs under given operating conditions	3	CO4
4.0	Diagnostics and Communication protocols		

4.1	Diagnostics- Importance, tasks	1	CO5
4.2	Fault storage and system action	1	CO5
4.3	Communication networks-CAN, LIN, MOST, Flexray-communication protocols- KWP2000, OBD-II	2	CO5
4.4	Diagnostic tester and fault codes	1	CO5
5.0	Quality, Reliability and Safety aspects		
5.1	Quality-Component and Product	1	CO6
5.2	Reliability-concepts and estimation	1	CO6
5.3	Safety by design-Safety process.	1	CO6
5.4	Product validation-EOL	1	CO6
	Total	36	

Course Designer:

1.Dr.R.Medeswaran

medes@tce.edu

2.Mr.Srinivasa Raghavan(TVS motors)

4055000	SOFT COMPUTING	Category	L	Т	Р	Credit
18EEPS0	(THEORY CUM PRACTICAL)	PE	2	0	2	3

Preamble

The objective of this course is to introduce basic concepts and applications of soft computing tools such as neural networks, fuzzy logic systems, and genetic algorithms. Also it covers soft computing based solutions for real-world Electrical Engineering problems.

Prerequisite

Prior knowledge of MATLAB software is required.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Describe the role of various soft computing techniques in building intelligent systems	5
CO2	Explain fuzzy logic operations, relations and inference system	10
CO3	Develop the fuzzy logic controler for the given electrical system	10
CO4	Explain the architecture and learning methodologies of perceptron, and back propagation neural networks	20
CO5	Apply back propagation neural network for modelling and control of the given electrical engineering system	10
CO6	Apply genetic algorithm to solve the given optimization problem using hand calculations	15
CO7	Use MATLAB Fuzzy logic, Neural network and GA toolboxes effectively to solve a given electrical engineering problem	30

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

CO	TCE	Lea	rning Doma	in Level	CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			•	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.2, 2.1.4
CO2	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.2, 2.1.4
CO3	TPS4	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.4,
		Арріу			2.4.6, 3.2.3, 4.5.3, 4.5.3
CO4	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.2, 2.1.4
CO5	TPS4	Apply	Value		1.3, 2.1.1, 2.1.2, 2.4.6,
		Арріу			3.2.3, 4.5.3, 4.5.3
CO6	TPS4	Apply	Value		1.3, 2.1.1, 2.1.2, 2.4.6,
		Арріу			3.2.3, 4.5.3, 4.5.3

CO7	TPS4	Analyze	Organize	Complex	overt	1.3, 2.1.1, 2.1.2, 2.4.6,
		Allalyze		response		3.2.3, 4.5.3, 4.5.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	М
CO 2	М	L						М		М			М	М
CO 3	S	М	L					М		М			S	S
CO 4	М	L						М		М			М	М
CO 5	S	М	L					М		М			S	S
CO 6	S	М	L					М		М			S	S
CO 7	S	S	М	L	S			М		М			S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Cor	ntinuous Ass Tests	essment	Practical Test	Terminal							
Levels	1	2	3		Examination							
Remember	20	20	20	-	20							
Understand	40	40	40	-	40							
Apply	40	40	40	30	40							
Analyse	0	0	0	40	0							
Evaluate	0	0	0	-	0							
Create	0	0	0	-	0							

AssessmentPattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	20
Complex Overt Responses	10
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

1. Explain the role of soft computing tools in building intelligent systems.

- 2. Explain the architecture of perceptron neural network.
- 3. Compare the performance of conventional optimization technique and GA in solving real-world optimization problem.

Course Outcome (CO2)

- 1. Explain the working of fuzzy logic controller with a neat block diagram
- 2. List the steps involved in the design of fuzzy logic controller
- For a speed control of DC motor the relation between series resistance and armature current are given as R and the relation between armature current and speed are given as S

$$R = \begin{bmatrix} y_1 & y_2 & z_1 & z_2 & z_3 \\ 0.5 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} & & S = \begin{bmatrix} y_1 \begin{bmatrix} 0.9 & 0.4 & 0.3 \\ 0.7 & 0.4 & 0.9 \end{bmatrix} \\ x_2 & y_3 & y_4 & y_5 \end{bmatrix}$$

Apply the concept of fuzzy relations such as a) max-min composition b) max-product composition and obtain the relation between series resistance and speed

Course Outcome (CO3)

- 1. How will you control the temperature and pressure in a thermal power plant by the control of throttle action using the concept of fuzzy logic? Assume the triangular membership functions for input and output.
- 2. Consider the speed control of induction motor problem, apply fuzzy logic to exercise this. Let change in speed and error in change in speed as inputs and output as switching frequency of the inverter.

Course Outcome (CO4)

- 1. List the different types of activation functions used in ANN
- 2. Describe BPN architecture with a neat sketch and explain the steps involved in the training of the network
- 3. Develop a suitable perceptron neural network model to perform the following classification problem. The vectors (1,1,1,1) and (-1,1,-1,-1) for belonging to the class (target value 1) vectors (1,1,1,-1) and (1,-1,-1,1) for not belonging to the class (target value -1).

Course Outcome (CO5)

- 1. Apply the concept of neural network to model and control the speed of an induction motor.
- Apply the concept of neural network to model and control the speed of an DC Motor

Course Outcome (CO6)

- 1. Explain the role of reproduction operator in GA
- 2. Perform two generations of simple binary coded genetic algorithm to solve the following optimization problem. Maximize $f(x) = x^2$ $0 \le x \le 31$, x is an integer. Use proportionate selection, single point crossover, binary mutation and population size of six.

3. Perform simple binary coded and real coded genetic algorithm to solve the following optimization problem.

Maximize $f(x) = |x| \sin(x)$ $-5 \le x \le 5$, x is real number.

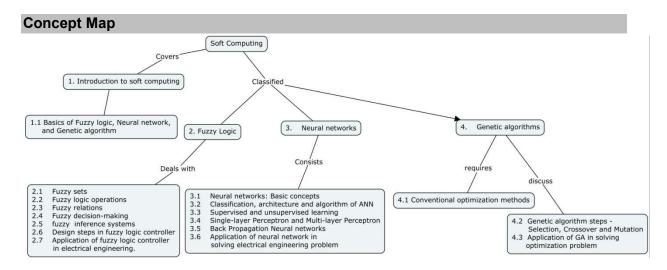
Use proportionate selection, single point crossover, and binary mutation for simple GA and proportionate selection, Arithmetic crossover, and Gaussian mutation for RGA. Evaluate the performance of SGA and RGA after a fixed number of generations with equal population size.

Course Outcome (CO7)

List of Experiments:

- 1. Develop a fuzzy logic system for mapping the following relationship. $f(x_1,x_2) = x_1^2 x_2 2x_1 x_2 + x_2^2 + \sqrt{x_1 x_2} \qquad \text{Where} \qquad 0 \le x_1 \le 2.0, \quad 0 \le x_2 \le 10.0$
- 2. Develop the fuzzy logic system for mapping the following data.

Χ	-20	-15	-12	-5	0	5	12	15	20
У	400	300	200	10	0	-10	-200	300	400


- 3. Design a fuzzy logic controller to perform the speed control of DC shunt motor with suitable of choice of input and output, membership functions diagram, and if-then rules.
- 4. Design a McCulloch Pitts Neural network model for 2-input bipolar I/O with bias to perform the logical AND/OR/NOT function.
- 5. Design a Perceptron Neural network model for 3-input bipolar I/O with bias to perform the logical AND/OR/NOT function.
- 6. Design a BPN Neural network model for 3-input bipolar I/O with bias to perform the logical AND/OR/NOT/XOR function.
- 7. Apply genetic algorithm to solve the following optimization problem. Maximize $f(x) = (1-x)^2$ Where $0 \le x \le 127$ x is an integer, Assume population size = 6, single point crossover and binary mutation.
- 8. Apply the principle of Genetic algorithm to determine the minimum distance from the origin of the xy plane to a circle described by $g(x,y)=(x-8)^2+(y-6)^2$. The minimum distance is obtained by minimization of the distance square given by $f(x,y)=x^2+y^2$. Assume the population size as four, use single point crossover, bitwise mutation, Roulette wheel selection and random initialization and perform the operation for one generation.
- 9. Apply the principle of Genetic algorithm to determine the minimum generation cost of three unit system, The following are the cost functions:

Unit A:
$$15 + 1.4P_A + 0.04P_A^2 \$/h$$

Unit B:
$$25 + 1.6P_R + 0.05P_R^2 \$/h$$

Unit C:
$$20 + 1.8P_C + 0.02P_C^2 \$/h$$

How should these units be dispatched if generation company must supply a load of 350 MW at a minimum cost?

Syllabus

Introduction to soft computing - Fuzzy logic, Neural Network and Genetic algorithm

Fuzzy Logic: Fuzzy sets, logic operations, and relations; Fuzzy decision-making; fuzzy inference systems; design steps in fuzzy logic controller; application of fuzzy logic controller in Electrical engineering.

Neural networks: Basic concepts and major classes of neural networks, supervised and unsupervised learning, Single-layer perceptron, Multi-layer perceptron, Back Propagation Neural network, RBF networks. Application of neural network modelling / control problems in Electrical engineering

Genetic algorithms: Introduction - genetic algorithm steps-Selection, Crossover and Mutation; Application of GA to Electrical engineering problems.

Use of MATLAB Fuzzy logic, Neural network and GA toolboxes to solve electrical engineering problems.

Learning Resources

- 1. George J.Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic, Second Edition, PHI, 2006
- 2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", Third Edition, John Wiley and Sons Ltd., 2010.
- J.M.Zurada, Introduction to artificial neural systems, Jaico Publishing House, 2006
- 4. D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-Wesley.1989.
- 5. S.N.Sivanandam, and S.N.Deepa, Principles of Soft computing, Second Edition, Wiley India Pvt. Ltd, 2013.
- 6. N.P.Padhy and S.P.Simon, Soft computing with MATLAB programming, Oxford publishers, 2015.
- 7. http://nptel.ac.in/courses/106106046/41
- 8. https://www.coursera.org/learn/neural-networks
- 9. http://www.iitk.ac.in/kangal/deb.shtml

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	·	Lectures	Outcome
1	Introduction to soft computing		
1.1	Basics of Fuzzy logic, Neural network, and Genetic algorithm	2	CO1
2.	Fuzzy Logic	ı	
2.1	Fuzzy sets	1	CO2
2.2	Fuzzy logic operations	1	CO2
2.3	Fuzzy relations	1	CO2
2.4	Fuzzy decision-making	1	CO2
2.5	fuzzy inference systems	1	CO2
2.6	Design steps in fuzzy logic controller;	1	CO3
2.7	Application of fuzzy logic controller in electrical engineering.	2	CO3
3	Neural networks		
3.1	Neural networks: Basic concepts	1	CO4
3.2	Classification, architecture and algorithm of ANN	2	CO4
3.3	Supervised and unsupervised learning	1	CO4
3.4	Single-layer Perceptron and Multi-layer Perceptron	2	CO4
3.5	Back Propagation Neural networks	1	CO5
3.6	Application of neural network in solving electrical engineering problem	2	CO5
4	Genetic algorithms		
4.1	Conventional optimization methods	1	CO6
4.2	Genetic algorithm steps - Selection, Crossover and Mutation	2	CO6
4.3	Application of GA in solving optimization problem	2	CO6
5	Use of MATLAB Fuzzy logic, Neural network and GA toolboxes to solve electrical engineering problems.	24	CO7
	Total	48	

Course Designers:

1.	Dr.S.Baskar	sbeee@tce.edu
2.	Dr. P. Venkatesh	pveee@tce.edu
3.	Dr.C.K.Babulal	ckbeee@tce.edu

18EEPU0	DRIVES AND CONTROL	Category	L	Τ	Р	Credit
		PE	3	0	0	3

Preamble

Electric Drives, both ac and dc types, come in many shapes and sizes. Some are standardized versions for general-purpose applications. Others are intended for specific tasks. In any case, motors should be selected to satisfy the dynamic requirements of the machines on which they are applied without exceeding rated motor temperature. Thus, the first and most important step in motor selection is determining load characteristics, torque and speed versus time. Selection is also based on mission goals, power available, and cost.

Prerequisite

18EE320:DC machines and Transformers

18EE420:AC machines

18EE530:Power electronics

Course Outcomes

On the successful completion of the course, students will be able to

Course	Course Outcomes	Weightage in
Outcome NO.		%
CO1	Select a drive for particular applications	10
CO2	Design 1 phase and 3 phase controlled rectifier based dc drive	20
CO3	Design various dc to dc converter topology based dc drive	20
CO4	Explain the operation of inverter fed induction motor drives	20
CO5	Explain the operation of synchronous motor, stepper motor and BLDC motor drive system	20
CO6	Analyze the different drives using simulation software such as MATLAB/Simulink, PLECS and PSIM	10

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale			•	
CO1	TPS3	Apply	Value		1.3
CO2	TPS3	Apply	Value		1.3, 2.1.1, 4.4.4
CO3	TPS3	Apply	Value		1.3, 2.1.1, 4.4.4
CO4	TPS2	Understand	Respond		1.3
CO5	TPS2	Understand	Respond		1.3, 2.1.1, 4.4.4
CO6	TPS4	Analyze	organize		1.3, 2.1.1

Mapping with Programme Outcomes and Programme specific Outcomes

CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	S	М	L					М		М				S
CO 2	S	М	L					М		М				S
CO 3	S	М	L					М		М				S
C04	М	L						М		М				М
CO 5	М	L						М		М				S
CO 6	S	S	М	L	S			М		М				L

S- Strong; M-Medium; L-Low

Assessment pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests				Assignn	Terminal		
Levels	1	2	3	1	2	3	Examination	
Remember	20	20	20	-	-	-	20	
Understand	20	20	20	-	-	-	20	
Apply	60	60	60	-	-	-	60	
Analyse	0	0	0	100	100	100	0	
Evaluate	0	0	0	-	-	-	0	
Create	0	0	0	-	-	-	0	

CO6 is evaluated through assignments

Assessment pattern: Psychomotor Domain

Psychomotor Skill	Miniproject /Assignment/Practical Component
Derecation	williproject /Assignment/Fractical component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Select a drive for railway locomotives and justify.
- 2. Select a drive for a levitated electric vehicles and justify.
- 3. Calculate the starting time of a drive with the following parameters j=10kg-m², T=15+0.5 ω_m , and Ti=5+0.6 ω_m

Course Outcome 2 (CO2):

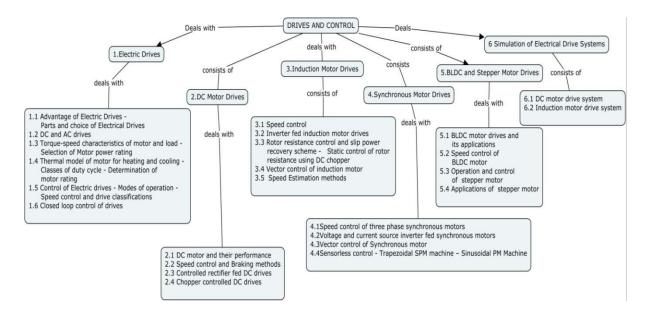
- 1. A 220V shunt Motor has an armature resistance of $0.062~\Omega$ and with full field has an emf of 215V at a speed of 960 rpm, the motor is driving an overhauling load with a torque of 172 Nm. Calculate the minimum speed at which the motor can hold the load by means of regenerative braking.
- 2. A 500V series motor having armature resistance and field resistance of 0.2 Ω and 0.3 Ω respectively runs at 500 rpm when taking 70A. Assuming unsaturated field, find out its speed when field diverter of 0.684 Ω is used constant load torque.
- 3. A 250V DC Series Motor takes 40A of current when developing a full load torque at 1500 rpm. Its resistance is 0.5 Ω . If the load torque varies as the square of the speed determine the resistance to be connected in series with the armature to reduce the speed to 122 rpm. Assume the flux is proportional to the field current.

Course Outcome 3 (CO3):

- 1. The input to a chopper is from a 100V dc source. The chopper is switched at a frequency of 100KHz with a pulse width of 4□s. What is the average output voltage of the chopper?
- Discuss the effect of the output voltage, duty ratio and the load current in the determination of the inductor and capacitor value of the filter used in buck converter based DC drives.

Course Outcome 4 (CO4):

- 1. Explain the operation of a 3 phase VSI in 120 degree mode
- 2. Explain the operation of a 3 phase VSI in 180 degree mode
- 3. Discuss the operation of 3 phase CSI fed IM.


Course Outcome 5 (CO5):

- 1. Explain the operation of a BLDC motor.
- 2. Discuss the operation of a synchronous motor.
- 3. Explain the operation of 4 phase stepper motor.

Course Outcome 6 (CO6):

- 1. Simulate a buck converter fed DC motor using PLECS.
- 2. Simulate a full converter fed DC motor using PSIM.
- 3. Explain the effect of harmonics on PWM inverters fed IM drives in industries

Concept Map

Syllabus

Electric Drives - Advantage of solid state electric drives - Parts and choice of electrical drives - Status of DC and AC drives - Torque-speed characteristics of motor and load - Selection of Motor power rating - Thermal model of motor for heating and cooling - Classes of duty cycle - Determination of motor rating - Control of Electric drives - Modes of operation - Speed control and drive classifications - Closed loop control of drives

DC Motor Drives - DC motor and their performance - Speed control - Braking Controlled rectifier fed DC drives - Chopper controlled DC drives

Induction Motor Drives - Speed control - Stator control-Inverter fed induction motor drives
 Rotor resistance control and slip power recovery schemes - Static control of rotor resistance - Vector control of induction motor- Speed Estimation methods

Synchronous Motor Drives - Speed control - Inverter fed synchronous motors - Vector control of Synchronous motor - Sensorless control - Sinusoidal PM Machine

BLDC Motor and Stepper motor Drives - Operation and control of BLDC motor and Stepper motor drives

Simulation of Electrical Drive Systems: DC motor drive- Induction motor drive

Learning resources

 G. K. Dubey: Fundamental of Electrical Drives - Narosa Publishing House, Chennai, 2004.

- 2. Bimal K.Bose Modern Power Electronics and AC Drives Pearson Education Asia Publication, 2003.
- 3. R.Krishnan Electric motor drives Modeling, analysis and control, Pearson Education, New Delhi, 2003.
- 4. Muhammad H.Rashid, Power Electronics Circuits, Devices & Applications Pearson Education India Publication, New Delhi, II Edition, 2007.
- 5. Ned Mohan, Tore Undeland & William Robbins, Power Electronics : converters Applications and Design-John Willey and sons 2003.

Course Contents and Lecture Schedule

S.No.	Topic	Duration (Hours)	CO
1.	Electric Drives		
1.1	Advantage of Electric Drives - Parts and choice of Electrical Drives	2	CO1
1.2	DC and AC drives	1	CO1
1.3	Torque-speed characteristics of motor and load - Selection of Motor power rating	2	CO1
1.4	Thermal model of motor for heating and cooling - Classes of duty cycle - Determination of motor rating	2	CO1
1.5	Control of Electric drives - Modes of operation - Speed control and drive classifications	1	CO1
1.6	Closed loop control of drives	1	CO1
2.	DC Motor Drives		
2.1	DC motor and their performance	1	CO2
2.2	Speed control and Braking methods	2	CO2
2.3	Controlled rectifier fed DC drives	2	CO2
2.4	Chopper controlled DC drives	2	CO3
3.	Induction Motor Drives		
3.1	Speed control	2	CO4
3.2	Inverter fed induction motor drives	1	CO4
3.3	Rotor resistance control and slip power recovery scheme - Static control of rotor resistance using DC chopper	2	CO4
3.4	Vector control of induction motor	2	CO4
3.5	Speed Estimation methods	1	CO4
4.	Synchronous Motor Drives		
4.1	Speed control of three phase synchronous motors	1	CO1
4.2	Voltage and current source inverter fed synchronous motors	1	CO6
4.3	Vector control of Synchronous motor	1	CO6
4.4	Sensorless control - Trapezoidal SPM machine – Sinusoidal PM Machine	1	CO1
5.	BLDC and Stepper Motor Drives		
5.1	BLDC motor drives and its applications	2	CO5
5.2	Speed control of BLDC motor	2	CO5

5.3	Operation and control of stepper motor	1	CO5
5.4	Applications of stepper motor	1	CO5
6	Simulation of Electrical Drive Systems		
6.1	DC motor drive system	1	CO6
6.2	Induction motor drive system	1	CO6
	Total	36	

Course designers

Prof. V.Suresh Kumar vskeee@tce.edu
 Dr. L.Jessi Sahaya Shanthi ljseee@tce.edu
 Dr. S.Arockia Edwin xavier saexeee@tce.edu

18EEPV0	FACTS AND CUSTOM POWER DEVICES	Category	L	Т	Р	Credit
		PE	3	0	0	3

Preamble

FACTS are power electronics based system that provides control of AC transmission system parameters to enhance controllability and increase power transfer capability. Rising energy costs and a greater sensitivity to environmental impact of new transmission lines necessitated the application of FACTS controllers to minimize losses and maximize the stable power-transmission capacity of existing lines.

Power distribution networks have always been exposed to traditional factors such as voltage sag, voltage swell, harmonics and capacitor switching which destruct sinusoidal waveforms and decrease power quality as well as network reliability. A reliable power of acceptable quality can be achieved by applying power electronic devices, called Custom Power devices, in power distribution networks. The present study tries to introduce and compare different types of FACTS & custom power devices and explain their applications.

Prerequisite

18EE530 : Power Electronics

18EE510 : Generation, Transmission and Distribution

Course Outcomes

On the successful completion of the course, students will be able to:

Course Outcome No.	Course Outcomes	Weightage*** in %
CO1	Explain the necessity of FACTS and custom power devices	10
CO2	Describe the performance and applications of various shunt and series type FACTS controllers	20
CO3	Explain the performance and applications of hybrid FACTS devices	20
CO4	Explain the functioning of custom power devices	20
CO5	Determine the performance characteristics of the given power network with FACTS controllers	15
CO6	Determine the stability of the given power network with custom power devices	15

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Domain Level			CDIO Curricular Components
#	Proficien	Cognitive	Affective	Psyc	(X.Y.Z)
	cy Scale			hom	

				otor	
CO1	TPS2	Understand	Respond	-	1.3, 2.1.1, 4.1.1, 4.1.2
CO2	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 4.1.1, 4.1.2
CO3	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1,
					4.3.2
CO4	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1,
					4.3.2
CO5	TPS3	Apply	Value	-	1.3, 2.1.2, 2.3.2, 2.3.3, 4.1.2, 4.3.3,
					4.3.4
CO6	TPS3	Apply	Value	-	1.3, 2.1.5, 2.3.2, 2.3.3, 4.1.1, 4.1.2,
					4.3.3, 4.3.4

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	М
CO 2	М	L						М		М			М	М
CO 3	М	L						М		М			М	М
CO 4	М	L						М		М			М	М
CO 5	S	М	L					М		М			S	S
CO 6	S	М	L					М		М			S	S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	As		nuous ent Tests	,	Terminal		
Levels 1 2 3		3	1	2	3	Examinati	
							on
Remember	20	10	10	-	-	-	10
Understand	80	60	60	-	-	-	60
Apply	-	30	30	100	100	100	30
Analyse	-	ı	-	-	-	-	=
Evaluate	-	ı	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-

Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1 Explain the concept of transmission network.
- 2 What is passive reactive compensation?
- 3 What is the need for FACTS controllers?

Course Outcome 2 (CO2):

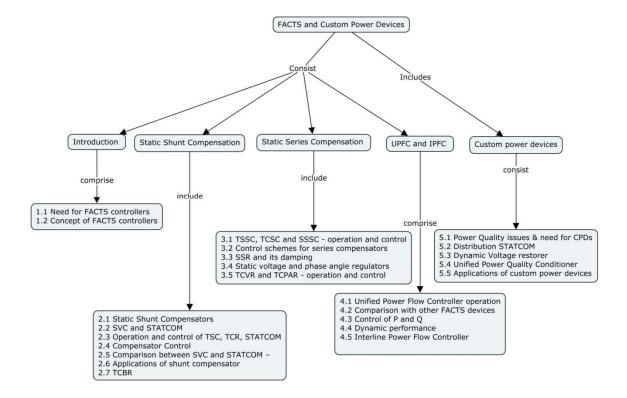
- 1 Compare TSSC and TCSC.
- 2 Discuss the application of STATCOM in Power System Damping.
- 3 How TCSC is used to mitigate SSR?

Course Outcome 3 (CO3):

- 1 Explain the working of UPFC.
- 2 Draw the UPFC model used for power flow studies.
- 3 Draw the phasor diagram of UPFC.

Course Outcome 4 (CO4):

- 1 Describe the operation of UPQC and DVR. Also discuss how UPQC and DVR are used to mitigate power quality problems.
- 2 Compute the expression for power transfers and reactive power requirement with diagram to increase the power transfer capability of transmission line using shunt compensator.
- 3 Design a filter to attenuate the 5th, 7th, and 11th harmonics. Also design such that each filter section is tuned 4 percent below the filtered harmonic.


Course Outcome 5 (CO5):

- 1. Design and illustrate the reactive power handling capability of a STATCOM using SPICE software.
- 2. Simulate a suitable controlling device for power factor compensation using Matlab software.
- 3. Simulate and demonstrate various compensation aspects of a UPFC

Course Outcome 6 (CO6):

- 1. Design simulation model of a DSTATCOM for harmonic reduction using Matlab software.
- 2. Design and illustrate the voltage sag handling capability of DVR using SPICE software.
- 3. Simulate a UPQC model and demonstrate various control aspects.

Concept Map

Syllabus

Introduction - Need for FACTS controllers- Concept of FACTS controllers

Static Shunt Compensation - Static Shunt Compensators - SVC and STATCOM - operation and control of TSC, TCR, STATCOM - Compensator Control - Comparison between SVC and STATCOM - Applications of shunt compensators and TCBR.

Static Series Compensation - TSSC, TCSC and SSSC - operation and control - Control schemes for series compensators - SSR and its damping - static voltage and phase angle regulators - TCVR and TCPAR - operation and control

UPFC and IPFC - The Unified Power Flow Controller - operation, comparison with other FACTS devices - control of P and Q - dynamic performance - Interline Power Flow Controller

Custom power devices: Power Quality issues & custom power devices – Distribution STATCOM – Dynamic Voltage restorer – Unified Power Quality Conditioner – Applications of custom power devices.

Learning Resources

- 1. K. R. Padiyar, FACTS Controllers in Power Transmission and Distribution, New Age InternationalPublishers, 2 nd Edition, 2016.
- 2. R. Mohan Mathur, Rajiv K. Varma. Thyristor-Based FACTS Controllers for Electrical Transmission Systems, Wiley & Dec. 2002.
- N.G. Hingorani & E. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, Wiley & EEE Press, 1999.
- 4. T.J.E Miller, Reactive Power Control in Electric Systems, New Age International, New Delhi, 1994.

- 5. Dr Ashok S & K S Suresh Kumar "FACTS Controllers and applications" course book for STTP, 2003.
- 6. G.T.Heydt: Electric Power Quality, 2nd edition, Stars in a Circle Publications, 1994.
- 7. Sankaran C, "Power Quality", CRC press special Indian edition 2009.
- 8. Arindam Ghosh and Gerald Ledwich: Power Quality Enhancement using Custom Power Devices, Kluwer Academic Publishers, 2002.

Course Contents and Lecture Schedule

SI No.	Topic	No. of lectures	СО
1	Introduction		
1.1	Need for FACTS controllers	1	CO1
1.2	Concept of FACTS controllers	1	CO1
2	Static Shunt Compensation		
2.1	Static Shunt Compensators	1	CO1
2.2	SVC and STATCOM	2	CO1
2.3	Operation and control of TSC, TCR, STATCOM	2	CO2
2.4	Compensator Control	1	CO2
2.5	Comparison between SVC and STATCOM –	1	CO2
2.6	Applications of shunt compensator	1	CO3
2.7	TCBR	1	CO3
3	Static Series Compensation		
3.1	TSSC, TCSC and SSSC - operation and control	2	CO2
3.2	Control schemes for series compensators	2	CO2
3.3	SSR and its damping	2	CO3
3.4	Static voltage and phase angle regulators	1	CO3
3.5	TCVR and TCPAR - operation and control	2	CO3
4	UPFC and IPFC		
4.1	Unified Power Flow Controller operation	2	CO4
4.2	Comparison with other FACTS devices	1	CO4
4.3	Control of P and Q	2	CO4
4.4	Dynamic performance	1	CO5
4.5	Interline Power Flow Controller	2	CO5
5	Custom power devices		
5.1	Power Quality issues & need for CPDs	2	CO6
5.2	Distribution STATCOM	1	CO6
5.3	Dynamic Voltage restorer	1	CO6
5.4	Unified Power Quality Conditioner	1	CO6
5.5	Applications of custom power devices	3	CO6
	Total	36	

Course Designers

Dr.V.Suresh Kumar vskeee@tce.edu
Dr.G.Sivasankar qsiva@tce.edu

18EEPW0	HVDC TRANSMISSION	Category	L	Т	Р	Credit
		PE	3	0	0	3

Preamble

High voltage direct current transmission has advantages over ac transmission in special situations. With the advent of thyristor valve converters, HVDC transmission became even more attractive. This course deals with the operation, modelling and control of HVDC link in power system. Also, trends for HVDC applications and practical examples are discussed in this course.

Prerequisite

18EE530: Power Electronics

18EE510 : Generation, Transmission and Distribution

Course Outcomes

On the successful completion of the course, students will be able to

Course	Course Outcomes	Weightage***
Outcome		in %
NO.		III %
CO1	Explain the significance and necessity of HVDC system	10
CO2	Discuss the power converters and harmonic filters used in HVDC system	20
CO3	Explain the control strategies and stability techniques used for HVDC system	20
CO4	Design a suitable controller for HVDC converter for the given specifications	15
CO5	Design a suitable protection scheme by identifying the fault in the system	15
CO6	Explain the application of HVDC system with practical examples	20

CO Mapping with CDIO Curriculum Framework

СО	TCE	Lear	ning Domain	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			,	(X.Y.Z)
CO1	TPS2	Understand	Respond	-	1.3, 2.1.1,
CO2	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1,
CO3	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 2.3.2,
CO4	TPS3	Apply	Value	-	1.3, 2.1.2, 2.3.2, 2.3.3,
CO5	TPS3	Apply	Value	-	1.3, 2.1.5, 2.3.2, 2.3.3,
CO6	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 2.3.2,

Mapping with Programme Outcomes and Programme Specific Outcomes

Co PO PO PO PO PO PO PO P	O PSO
---	-------

s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	М
CO 2	М	L						М		М			М	М
CO 3	М	L						М		М			М	М
CO 4	S	М	L					М		М			S	S
CO 5	S	М	L					М		М			S	S
9 0	М	L						М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	As		nuous ent Tests		Terminal		
Levels	1	2	3	1	2	3	Examinati
							on
Remember	20	10	10	-	-	-	10
Understand	80	60	60	-	-	-	60
Apply	-	30	30	100	100	100	30
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

riococomionici autorini i ogoniomio	
Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Differentiate AC and DC transmission systems.
- 2. Explain modern trends in DC transmission system.
- 3. Explain the specifications and concepts used DC transmission system.
- 4. List the advantages of DC transmission

Course Outcome 2 (CO2):

- 1. In what way should the firing angle and extinction be controlled to minimize reactive power consumption?
- 2. Explain the types of power converters.

- 3. Explain the characteristics of a twelve pulse converter used in HVDC.
- 4. Explain about current and extinction angle control.

Course Outcome 3 (CO3):

- 1. Explain the advantages of per unit quantities in DC system.
- 2. Compare the solution of DC power flow over AC power flow in DC system.
- 3. Perform power flow analysis using substitution of power injection method.

Course Outcome 4 (CO4):

- 1. Model and control DC LINK in a power system.
- 2. Prove that for same power transmitted and same percentage loss, the insulation level in DC transmission is only87% of that AC transmission.
- 3. An existing 400 kV 3-phase AC line transmitting a power 100 MW is converted in to bipolar DC line. Evaluate the voltage/pole and DC line losses, if the resistance of each conductor is 0.01 ohm. Assume pf=0.90.
- 4. Compare the dynamic interactions between DC and AC systems.
- 5. Design controller parameters to obtain desired output
- 6. Construct an energy efficient controller for the HVDC system.

Course Outcome 5 (CO5):

- 1. Illustrate the intensity of the fault
- 2. Select appropriate fault clearance techniques.
- 3. Design suitable protection circuits
- 4. A 400 kV 3-phase AC line of 800 km length transmitting 1000MW is converted in to DC line. If the surge impedance pf the line is 320 ohm, calculate the number of conductors required and surge impedance loading of 3-phase AC system.
- 5. A 400 kV 3-phase AC line of 800 km length transmitting 1000MW is converted in to a DC line. If the surge impedance pf the line is 320 ohm, calculate voltage per pole as DC line power losses, as percentage of AC power losses. Consider pf =0.90.

Course Outcome 6 (CO6):

1. Identify the type of system given in Figure 6.1 and discuss the merits compare to other types.

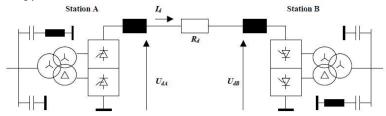
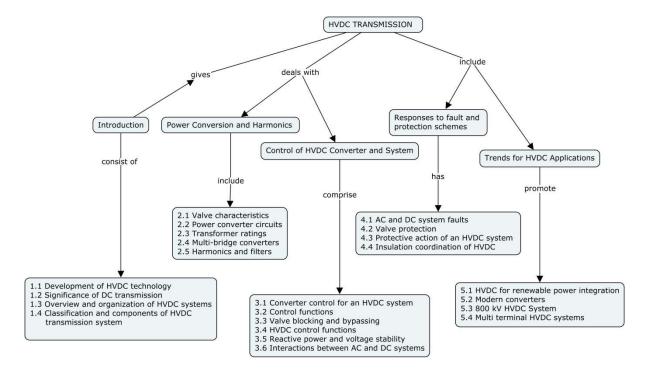



Figure 6.1

- 2. Illustrate the significance of DC system with a suitable example
- 3. Explain the importance of DC transmission in wind power generation system

Concept Map

Syllabus

Introduction to HVDC Technology

Development of HVDC technology, Significance of DC transmission, Overview and organization of HVDC systems, Classification and components of HVDC transmission system.

Power Conversion and Harmonics

Valve characteristics, Power converter circuits, transformer ratings, multi-bridge converters, harmonics and filters.

Control of HVDC Converter and System

Converter control for an HVDC system, control functions, valve blocking and bypassing, Reactive power and voltage stability, control of AC/DC interaction.

Responses to fault and protection schemes

AC and DC system faults, Valve protection, Protective action of an HVDC system, Insulation coordination of HVDC.

Trends for HVDC Applications

HVDC for renewable power integration, Modern converters, 800 kV HVDC System, Multi terminal HVDC systems

Learning Resources

- 1. Chan-Ki Kim, "HVDC TRANSMISSION Power Conversion Applications in Power Systems", John Wiley & Sons Pvt. Ltd., 2009
- 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993
- 2. K.R.Padiyar, "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.
- 3. J.Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 4. Erich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
- V.K.Sood, "HVDC and FACTS controllers Applications of Static Converters in Power System", APRIL 2004, Kluwer Academic Publishers.

Course Contents and Lecture Schedule

	Contents and Lecture Schedule		
Module	Topic	No. of	CO
No.	·	Lectures	
1	Introduction	1	
1.1	Development of HVDC technology	1	CO1
1.2	Significance of DC transmission	1	CO1
1.3	Overview and organization of HVDC systems	1	CO1
1.4	Classification and components of HVDC	2	CO1
	transmission system		
2.	Power Conversion and Harmonics		
2.1	Valve characteristics	2	CO2
2.2	Power converter circuits	2	CO2
2.3	Transformer ratings	1	CO2
2.4	Multi-bridge converters	2	CO2
2.5	Harmonics and filters	2	CO2
3	Control of HVDC Converter and System		
3.1	Converter control for an HVDC system	2	CO3
3.2	Control functions	1	CO3
3.3	Valve blocking and bypassing	2	CO3
3.4	HVDC control functions	2	CO3
3.5	Reactive power and voltage stability	2	CO4
3.6	Interactions between AC and DC systems	1	CO4
4	Responses to fault and protection schemes		
4.1	AC and DC system faults	2	CO5
4.2	Valve protection	2	CO5
4.3	Protective action of an HVDC system	2	CO5
4.4	Insulation coordination of HVDC	1	CO5
5	Trends for HVDC Applications		
5.1	HVDC for renewable power integration	1	CO6
5.2	Modern converters	2	CO6
5.3	800 kV HVDC System	1	CO6
5.4	Multi terminal HVDC systems	1	CO6
	Total	36	

Course Designers:

Dr. V. Suresh Kumar vskeee@tce.edu
 Dr. G. Sivasankar qsiva@tce.edu

18EEPC0

DESIGN OF ELECTRICAL INSTALLATIONS

Category	L	Т	Р	Credit
PE	3	0	0	3

Preamble

Design of Electrical Installations course will illustrate the correct procedure for basic design of installations from initial assessment to final commissioning. The Electrical Installation must be primarily concerned with the safety of persons, property and livestock. The selection of appropriate systems and associated equipment and accessories is an integral part of the design procedure, and as such cannot be addressed in isolation. For example, the choice of a particular type of protective device may have a considerable effect on the calculation of cable size or shock risk, or the integrity of conductor insulation under fault conditions.

Prerequisite

18EE320 DC Machines and Transformers

18EE420 AC Machines

Course Outcomes

On the successful completion of the course, students will be able to:

COs	Course outcomes	Weightage
No.		in %
CO1	Describe the General rules of Electrical Installations design as per the Indian Electricity Rules	15
CO2	Design of Electrical Installations based on equipment ratings	15
CO3	Discuss the Selection of a right type of Sub-station for an Electrical System	15
CO4	Calculate the Size of LV Distribution System Components for a specified Electrical System	15
CO5	Draw the Electrical Plan and Selection of System components for the given specification of Residential Electrical Installations.	20
CO6	Choose the right type and Ratings of electrical safety and protective devices against electrical hazards	20

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learr	ning Domair	n Level	CDIO Curricular Components	
#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)	
CO1	TPS3	Understand	Respond		1.3, 2.3.1	
CO2	TPS2	Apply	Value		1.3, 2.1.1, 2.3.1, 2.4.3, 2.4.4	
CO3	TPS2	Understand	Respond		1.3, 2.3.1	
CO4	TPS2	Apply	Value		1.3, 2.1.1, 2.1.5	
CO5	TPS2	Apply	Value		1.3, 2.1.1, 2.3.1, 2.4.3, 2.4.4	
CO6	TPS2	Understand	Respond		1.3, 2.3.1, 2.4.3, 2.4.6	

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	S	М	L					М		М				S
CO 3	М	L						М		М				М
CO 4	S	М	L					М		М				S
CO 5	S	М	L					М		М				S
CO 6	М	L						М		М				М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels			nuous sment sts		Assignme	nt*	Terminal Examinatio
	1	2	3	1	2	3	n
Remember	20	20	20	-	-	-	20
Understand	40	40	40	-	-	-	40
Apply	40	40	40	100	100	100	40
Analyse	0	0	0	-	-	-	0
Evaluate	0	0	0	-	-	-	0
Create	0	0	0	-	-	-	0

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Specify the role of Cut-out on Consumer's premises
- 2. Explain the identification of earthed and earthed neutral conductors & position of switches and cut-outs.
- 3. Explain the need of periodical and testing of consumer's installation.
- 4. Explain in detail the points to be inspected while carry out an annual inspection in a commercial complex.
- 5. Discuss about the guidelines for electrical contractors for wiring and earthing.

Course Outcome 2 (CO2):

- 1. State the nature of starting current drawn by an induction motor.
- 2. Define contracted demand and maximum demand.

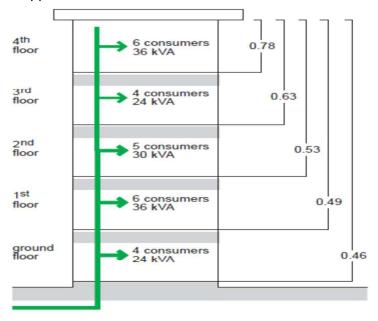
3. Select a Suitable Size of Transformer in KVA for an Industry has the following connected load. The recommended load factor of the transformer will be 60%. The diversity factor of the load is 1.2.

1. Type of Load	2. Rating
3. Induction Motors	4. 450HP
5. Lighting System	6. 25kW
7. Electric Oven	8. 100kW

Course Outcome 3 (CO3).

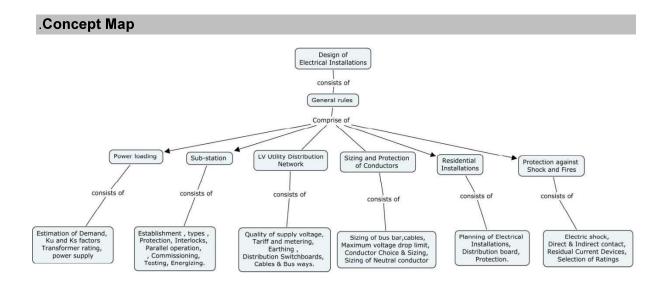
- 1. List the various types of Sub-station
- 2. Discuss the factors to be considered, while selecting a sub-station for an Industrial power Distribution.
- 3. Explain the procedure for the establishment of a new sub-station.
- 4. Discuss the choice of selecting of Power Generation Source for an Industrial Unit.

Course Outcome 4 (CO4)


- 1. List the basic components of a Power Distribution System.
- 2. Calculate the MCB Ratings of the Main Distribution Board supplying power to a workshop have the following connected loads.

Equipment Name	Apparent Power in	Utilization	Diversity
	kVA	Factor	Factor
Lathe No.1	5	0.8	0.75
Lathe No.2	5	0.8	0.75
Lathe No.3	5	0.8	0.75
Lathe No.4	5	0.8	0.75
Pedestal Drill No.1	2	0.8	0.60
Pedestal Drill No.2	2	0.8	0.60
5Nos. of Socket Outlets 16Amps	18	1	0.20
30Nos. Fluorescent Lamp	3	1	1.00

Course Outcome 5 (CO5)


- 1. List the basic components of Domestic Wiring Systems.
- 2. State the advantages of Concealed Wiring.
- 3. Design a single phase power distribution system for your house and draw the single line diagram of the same.

4. 5 storey's apartment building with 25 consumers, each having 6 kVA of installed load. The total installed load for the building is: 36 + 24 + 30 + 36 + 24 = 150 kVA. The apparent-power supply required for the building is: 150 x 0.46 = 69 kVA. From the given Figure. Determine the magnitude of currents in different sections of the common main feeder supplying all floors. For vertical rising mains fed at ground level, the cross-sectional area of the conductors can evidently be progressively reduced from the lower floors towards the upper floors.

Course Outcome 6 (CO6)

- 1. Discuss the protective devices in electrical installations.
- 2. State the purpose of Interlocks and mention the condition of operation.
- 3. Explain the provision of Interlocks to avoid the contacts between Electricity Board Supply with the Captive Power Supply with a diagram.

Syllabus

GENERAL RULES OF ELECTRICAL INSTALLATION DESIGN: Methodology & Characteristics of Installed power loads - Rules and statutory regulations- Voltage Ranges, Standards, Quality & Safety of an electrical installation, Initial Testing of Installation, Periodic Check& Testing of Installation—Induction motors, Induction Furnace, Resistive type heating applications, Lamps.

POWER LOADING OF AN INSTALLATION: Installed Power & Apparent Power, Estimation of Actual Maximum KVA Demand, Shunt Compensation, Automatic Power Factor Correction, Application of factors Ku and Ks, Choice of Transformer rating, Choice of power supply sources.

SUB-STATION: Establishment of a new sub-station, Different types of sub-station, Protection of Transformer, Interlocks & conditioned operations, information & requirement provided by utility, Parallel operation of transformers, Generators in stand-alone operation, Generators in parallel operation mode, Commissioning, Testing, Energizing.

LV UTILITY DISTRIBUTION NETWORK: Low voltage consumers, Low voltage networks, Consumer service connection, Quality of supply voltage, Tariff and metering, Earthing connections, Standardized earthing schemes, Installation and measurements of earth electrodes, Distribution Switchboards, Cables & Busbar.

SIZING AND PROTECTION OF CONDUCTORS: Recommended simplified approach for cables, Sizing of bus bar trunking systems, Maximum voltage drop limit, Calculation of voltage drop in steady load conditions, Short circuit current, Calculation of minimum levels of short circuit current, Conductor Choice & Sizing, Sizing of Neutral conductor, Protection & Isolation of Neutral conductor, Examples of cable calculation.

RESIDENTIAL INSTALLATIONS: Planning of Electrical Installations, Distribution board components selection, Protection of People, Circuits, Protection against over voltages & Lightning, Equi-potential Bonding.

PROTECTION AGAINST ELECTRIC SHOCK AND ELECTRIC FIRES: Electric shock, Direct & Indirect contact, Measures of protection against indirect contact, Residual Current Devices, Arc Fault Detection Devices, Selection of Ratings.

Learning Resources

- 1. Schneider Electric "Electrical Installation Guide", Schneider Electric Industries SAS, 2016 Year Edition, 2016.
- 2. Bureau of Indian Standards, "National Electrical Code 2011", Government of India, 1st Revision 2011.
- 3. Siemens "Planning of Electrical Power Distribution Technical Principles", Published by Siemens AG, Germany,2014
- 4. A.J.Watkins, C.Kitcher, "Electrical Installation Calculations Basics", Elsevier Publications, 8th edition, 2009.
- 5. Brian Scadden, "IEE Wiring Regulation: Design and Verification of Electrical Installations" Elsevier Publications, 6th edition,

6. Paul Cook, "Electrical Installation Design Guide", The Institution of Engineering & Technology, UK, 2nd Edition, 2013.

Course Contents and Lecture Schedule

Module No.	Торіс	No. of Lecture Hours	Course Outcome
1	General rules of electrical installation design		
1.1	Methodology & Characteristics of Installed power loads, Rules and statutory regulations	3	CO1
1.2	Voltage Ranges, Standards, Quality & Safety of an electrical installation, Initial Testing of Installation, Periodic Check& Testing of Installation	2	CO1
1.3	Induction motors, Induction Furnace, Resistive type heating applications, Lamps	2	CO1
2.	Power loading of an installation		
2.1	Installed Power & Apparent Power, Estimation of Actual Maximum KVA Demand, Shunt Compensation, Automatic Power Factor Correction Application of factors Ku and Ks	3	CO2
2.2	Choice of Transformer rating, Choice of power supply sources.	2	CO2
3	Sub-station		
3.1	Establishment of a new sub-station, Different types of sub-station	2	CO3
3.2	Protection of Transformer, Interlocks & conditioned operations, information & requirement provided by utility, Parallel operation of transformers	2	CO3
3.3	Generators in stand-alone operation, Generators in parallel operation mode, Commissioning, Testing, Energizing.	2	CO3
4	LV Utility Distribution Network		
4.1	Low voltage consumers, Low voltage networks, Consumer service connection, Quality of supply voltage, Tariff and metering,	2	CO4
4.2	Earthing connections, Standardized earthing schemes, Installation and measurements of earth electrodes,	2	CO4
4.3	Distribution Switchboards, Cables & Busbar.	1	CO4
5.	Sizing and Protection of Conductors		
5.1	Recommended simplified approach for cables, Sizing of bus bar trunking systems, Maximum voltage drop limit, Calculation of voltage drop in steady load conditions	3	CO5
5.2	Short circuit current, Calculation of minimum levels of short circuit current	2	CO5

Module No.	Topic	No. of Lecture Hours	Course Outcome
5.3	Conductor Choice & Sizing, Sizing of Neutral conductor, Protection & Isolation of Neutral conductor, Examples of cable calculation.	2	CO5
6.	Residential Installations		
6.1	Planning of Electrical Installations, Distribution board components, Protection of People, Circuits	3	CO6
6.2	Protection against over voltages & Lightning, Equipotential Bonding.	1	CO6
7.	Protection against Electric Shock and Electric Fires		
7.1	Electric shock, Direct & Indirect contact, Measures of protection against direct contact, Measures of protection against indirect contact,	3	CO6
7.2	Residual Current Devices, Arc Fault Detection Devices, Selection of Ratings.	2	CO6
	Total	39	

Course Designers

Dr.V.Saravanan vseee@tce.edu
 Dr.P.S.Manoharan psmeee@tce.edu

4055570	WIND AND SOLAR TECHNOLOGY	Category	L	Т	Р	Credit
18EEPT0		PE	3	0	0	3

Preamble

Wind energy is the fast renewable source for the electricity generation. The course presents broad overview of wind energy technology. Due to the growing demand for renewable energy resource especially harnessing power from sun it is felt essential to offer a course on solar photovoltaic technology and systems.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

СО	Course Outcome Statement	Weightage***
Number		in %
CO1.	Demonstrate the power produced in wind turbine, types of wind turbine and its effect on tower height, maximum rotor efficiency.	20
CO2.	Explain the different types of wind electric generators such as Asynchronous (induction) generator, and synchronous generator with a neat block diagram	15
CO3.	Derive the average power, energy produced in the wind turbine, wind forms and wind turbine economics.	15
CO4.	Draw simple and accurate equivalent circuit of photovoltaic cell with its IV curve and obtain the fill factor and efficiency	15
CO5.	Demonstrate Photovoltaic cells, module, arrays and also impact of temperature and insulation on IV curves and impact of shading effect on a PV module.	15
CO6.	Explain simplified grid connected PV system with simple case study in home, Current voltage curves for loads, DC motor IV curves, Battery IV curves, maximum power point trackers, hourly IV curves, grid connected systems.	20

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learn	ing Domain	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			-	(X.Y.Z)
CO1	TPS3	Apply	Value	-	1.3, 2.1.3
CO2	TPS2	Understand	Respond	-	1.3, 2.1.2
CO3	TPS3	Apply	Value	-	1.3, 2.1.3
CO4	TPS3	Apply	value	-	1.3, 2.1.4,2.2.3,3.2.5
CO5	TPS3	Apply	Value	-	1.3, 2.1.4, 2.1.5, 3.2.5
CO6	TPS3	Apply	value	ı	1.3, 2.1.2,4.3.2

Mappi	Mapping with Programme Outcomes													
СО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1.	S	М	L	L				М		М			S	
CO2.	М	L						М		М			M	
CO3.	S	М	L	L				М		М			S	
CO4.	S	М	L	L				М		М			S	
CO5.	S	М	L	Ĺ				М		М			S	
CO6.	S	М	Ĺ	Ĺ				М		М			S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

	Continuous			Α	ssignmen		
Cognitive		Assessi	ment Tests			Terminal	
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	-	-	-	20
Understand	20	20	20	-	-	-	20
Apply	60	60	60	100	100	100	60
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. What are the types of wind turbines and explain with the necessary diagram
- 2. Derive the expression for the power produced in the wind.
- 3. Compare the energy at 15° C, 1 atm pressure , contained in 1m^2 of the following wind regims: a) 100 hours of 6 m/s wind (13.4 mph) b) 50 hours at 3 m/s plus 50 hours at 9 m/s (i.e. an average wind speed of 6 m/s)
- 4. Derive the expression for maximum rotor efficiency.

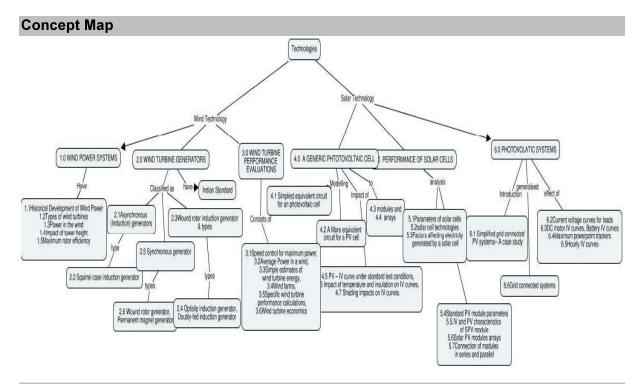
Course Outcome 2 (CO2):

- 1. Explain the operation of Squirrel cage induction generator with a suitable diagram
- 2. Explain the types of wound rotor induction generator and its operation with suitable diagram
- 3. Explain the types of synchronous generator and its operation with suitable diagram

Course Outcome 3 (CO3):

- 1. Estimate the average power in the wind at a height of 50m when the wind speed at 10 m averages 6 m/s. Assume Rayleigh statistics, a standard friction coefficient α =1/7, and standard air density =1.225 kg/ m3.
- 2. Suppose that a wind farm has 4 rotor diameter tower spacing along its rows, with 7 diameter spacing between rows (4D x 7D.) Assume 30% wind turbine efficiency and an array efficiency of80%. a) Find the annual energy production per unit of land area in an area with 400 W/m². Winds at hub height (the edge of 50 m, class 4 winds) b)Suppose that the owner of the wind turbines leases the land from a rancher for \$100 per acre per year (about 10 times what a Texas rancher makes on cattle). What does the lease cost per KWh generated?

Course Outcome 4 (CO4):


- 1. Draw the simplest equivalent circuit for a photovoltaic cell and draw the IV curve for a photovoltaic cell.
- 2. Draw a more accurate equivalent circuit for a PV cell and draw the IV curve for a photovoltaic cell
- 3. Obtain the maximum power point from the IV curve of a given PV cell.

Course Outcome 5 (CO5):

- 1. A PV module is made up of 36 identical cells, all wired in series. With 1 sun– insolation (1 KW/m²), each cell has short circuit current Isc = 3.4 A and at 25°C, its reverse saturation current is I_0 = 6 x 10⁻¹⁰ A.A parallel resistance RP = 6.6 Ω and series resistance Rs = 0.0005 Ω . a. Find the voltage, current and power delivered when the junction voltage of each cell is 0.5 V. b. Set up a spread sheet for I and V and present a few lines of output to show how it works.
- 2. Explain the operation of PV modules is series and parallel?
- 3. Explain the impact of temperature and insulation on IV curves?
- 4. Explain the impact of shading effect on a PV module?

Course Outcome 6 (CO6):

- 1. Explain simplified grid connected PV system with the necessary diagram
- 2. Design the grid connected PV for a home/ Institution/ company a case study
- 3. ExplainIV curves for loads, DC motors and Batteries
- 4. Design a grid connected PV system for fulfilling the load energy requirement of 12 KWh/day. Assume that grid is available full time and no battery storage is required. Give the details of all components selected for the plant. Take the average ambient temperature of 25*c, and average solar radiation of 5.5 Kwh/m²/day.

Syllabus

Wind Power Systems

Historical Development of Wind Power, Types of wind turbines, Power in the wind, Impact of tower height, Maximum rotor efficiency.

Wind Turbine Generators

Asynchronous (Induction) generator- Squirrel cage induction generator, wound rotor induction generator- Optislip induction generator- doubly-fed induction generator. Synchronous generator – Wound rotor generator – Permanent magnet generator, Indian standards

Wind Turbine performance evaluations

Average Power in a wind, Simple estimates of wind turbine energy - Wind farms, Specific wind turbine performance calculations, Wind turbine economics - Capital cost and Annual Cost.

A Generic Photovoltaic Cell

Simplest equivalent circuit for a photovoltaic cell, A More equivalent circuit for a PV cell, Solar cells to modules, Solar modules to arrays, PV – IV curve under standard test conditions, Impact of temperature and insulation on IV curves, Shading impacts on IV curves

Performance of solar cells

Parameters of solar cells, solar cell technologies - Factors affecting electricity generated by a solar cell, solar PV module, standard PV module parameters, IV and PV characteristics of SPV module, solar PV modules arrays- connection of modules in series and parallel.

Photovoltaic Systems

Introduction to Simplified grid connected PV systems, Current voltage curves for loads - DC motor IV curves - Battery IV curves - maximum power point trackers - hourly IV curves, grid connected systems.

Learning Resources

- 1. Non Conventional Energy resources G.S Sawhney PHI 2012
- 2. Solar Photovoltaic Technology and Systems Chetan Singh Solanki PHI 2018
- 3. Solar Photovoltaics Third edition Chetan Singh Solanki PHI 2017
- 4. Renewable and Efficient electric power systems Gilbert M Masters John Wiley & Sons Inc. 2004
- 5. Course material on 20th National Training course on wind energy technology organized by NIWE, Chennai.
- 6. On line courses organized by Udemy, courseera,edx, MOOC, NPTEL and SWAYAM in the area of renewable energy.
- 7. https://www.hindawi.com/journals/ijp/2014/763106/

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Lecture	Outcome
		Hours	
1.0 WIND P	OWER SYSTEMS		
1.1	Historical Development of Wind Power	1	CO1
1.2	Types of wind turbines	1	CO1
1.3	Power in the wind	1	CO1
1.4	Impact of tower height	1	CO1
1.5	Maximum rotor efficiency	1	CO1
2.0 WIND T	URBINE GENERATORS		
2.1	Asynchronous (Induction) generators	1	CO2
2.2	Squirrel cage induction generator	1	CO2
2.3	Wound rotor induction generator	1	CO2
2.4	Optislip induction generator, Doubly-fed induction	1	CO2
	generator		
2.5	Synchronous generator	1	CO2
2.6	Wound rotor generator, Permanent magnet	1	CO2
	generator		
3.0 WIND T	URBINE PERFORMANCE EVALUATIONS		
3.1	Speed control for maximum power	1	CO3
3.2	Average Power in a wind	1	CO3
3.3	Simple estimates of wind turbine energy	1	CO3
3.4	Wind farms	1	CO3
3.5	Specific wind turbine performance calculations	1	CO3
3.6	Wind turbine economics	1	CO3
4.0 A GENE	RIC PHTOTOVOLTAIC CELL		
4.1	Simplest equivalent circuit for an photovoltaic cell	1	CO4
4.2	A More equivalent circuit for a PV cell	1	CO4

4.3	Solar cells to modules	1	CO4
4.4	Solar modules to arrays	1	CO4
4.5	PV – IV curve under standard test conditions	1	CO4
4.6	Impact of temperature and insulation on IV curves	1	CO4
4.7	Shading impacts on IV curves.	1	CO4
5.0 PERF	ORMANCE OF SOLAR CELLS		
5.1	Parameters of solar cells	1	CO5
5.2	solar cell technologies	1	CO5
5.3	Factors affecting electricity generated by a solar cell	1	CO5
5.4	Standard PV module parameters	1	CO5
5.5.	IV and PV characteristics of SPV module	1	CO5
5.6	Solar PV modules arrays	1	CO5
5.7	Connection of modules in series and parallel	1	CO5
6.0 PHOTO	DVOLATIC SYSTEMS		
6.1	Simplified grid connected PV systems – A case study	1	CO6
6.2	Current voltage curves for loads	1	CO6
6.3	DC motor IV curves, Battery IV curves	1	CO6
6.4	Maximum powerpoint trackers	1	CO6
6.5	Hourly IV curves	1	CO6
6.6	Grid connected systems	1	CO6
	Total	36	

Course Designer:

1. Dr. P. Venkatesh

pveee@tce.edu

4055000	PRINCIPLES OF ENERGY	Category	L	Т	Р	Credit
18EERC0	CONSERVATION	PE	3	0	0	3

Preamble

Energy resource scarcity becomes one of the biggest issues in the world and leading to rise in cost. Effective utilization of Electrical energy is one of the key issues to minimize the rising cost of energy and to minimize the global warming. The objective of the course is to provide an introduction to principles of Energy Conservation in Electrical System. This course will educate the power system engineers on the aspect of energy conservation in electrical equipment and Electrical Installations. It will helpful to select an energy efficient electrical system for an establishment.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

	Course Outcomes	Weightage
		%
CO1	Describe the principles of Energy Audit, Management and	10
	Conservation	
CO2	Estimate the energy performance of Electrical System	20
CO3	Estimate the energy performance of Electrical Motors	20
CO4	Estimate the energy performance of Lighting System	20
CO5	Selection and Operation aspects of DG Set for Energy Efficiency	10
CO6	Identify the Energy Efficient gadgets for domestic, commercial and industrial applications	20

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Do	main Level	CDIO	Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale				(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.3, 2.1.1, 2.1.	5, 2.2.2
CO2	TPS3	Apply	Value		1.3, 2.1.4, 2.1.	5, 2.3.3
CO3	TPS3	Apply	Value		1.3, 2.1.4, 2.1.	5
CO4	TPS3	Apply	Value		1.3, 2.1.4, 2.1.	5
CO5	TPS2	Understand	Respond		1.3, 2.1.4,	
CO6	TPS3	Apply	Value		1.3, 2.1.3	

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	РО	РО	РО	РО	PO	P06	PO7	P08	PO9	Ю	РО	PO12	PSO	PSO
s	1	2	3	4	5					10	11		1	2

CO 1	М	L				М	М		М	
CO 2	S	М	L	L		М	М		S	
CO 3	S	М	L	L		М	М		S	
CO 4	М	L				М	М		М	
CO 5	S	М	L	L		М	М		S	
CO 6	М	L				М	М		S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continu Tests	ous Asse	essment	A	Assignme	Terminal	
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	-	-	-	20
Understand	50	40	40	-	-	-	40
Apply	30	40	40	100	100	100	40
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Mention the types of Energy audit.
- 2. List down the objective of energy management
- 3. Explain the implications of part load operation of energy equipment with examples.

Course Outcome 2 (CO2):

- 1. Define contracted demand and billing demand.
- 2. A textile mill operates with a load of 1800kVA demand at 0.85 power factor lagging. If the power factor is improved from 0.85 to 0.95 lagging by adding additional capacitors, calculate the reduction in demand. The demand charge is Rs.300 per kVA demand per

- month. Calculate the demand cost saving per year due to the power factor improvement.
- 3. In a sub-station 2Nos. of identical 5000kVA 33kV / 11kV Transformers are operated parallel to meet a domestic load. The iron and full load copper loss of the above Transformer is 9.2 kW and 32.5kW respectively. Initially the two transformers are operated in parallel to meet the load. The load pattern of the domestic load is as follows:

Load in kW	6000	3500	3000	8000	1500
Power factor	0.8 Lagging	0.78 Lagging	0.75 Lagging	0.9 Lagging	0.7 Lagging
Time in 24 Hours	6.00 A.M to 9.00 A.M	9.00 A.M to 12 Noon	12 Noon to 6.00 P.M	6.00 P.M to 10.00 P.M	10.00 P.M to 6.00 A.M

Suggest the best operating practice for the sub-station to minimize the transformer loss and also quantify the transformer loss minimized due to the best transformer operating practice.

Course Outcome 3 (CO3).

- 1. Name three types of motors in industrial practice.
- 2. An 89% efficient 30HP Size standard efficiency induction motor was replaced with a 93% efficient 30HP size Premium efficiency induction motor to improve energy efficiency. Calculate the Annual energy saving potential and payback period for the above proposal, using the following data given for the above applications.

Load factor - 90%

Operating Hours per year - 8000 Hours

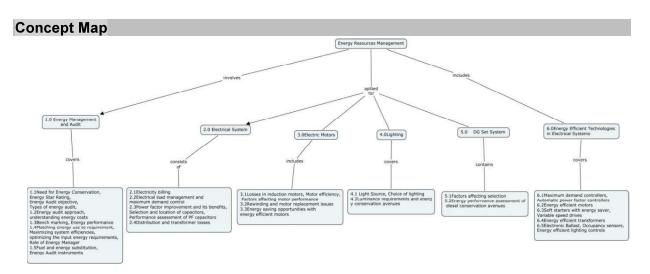
Cost per kWh of Energy - Rs.5

Cost of Premium efficiency induction motor - Rs.60000/-

Scrap value of old standard efficiency induction motor - Rs.20000/-

Assume the operating efficiency is as that of designed efficiency at 90% load factor condition.

Course Outcome 4 (CO4)


- 1. Describe the methodology of lightning energy audit in an industrial facility.
- 2. In a factory shop floor lighting 60Nos. of 400Watts High Pressure Mercury Vapour (HPMV) lamps are replaced with 250Watts Metal Halide Lamps to reduce energy consumption. The luminous efficacy of HPMV Lamp and Metal Halide lamp are 60 & 100 Lumens per watt. Calculate the Annual energy saving potential and payback period for the above energy saving proposal, if the lamps are used for 12 Hours daily for 330Days in a year. The cost per fitting of Metal halide lamp is Rs.6000/- and cost per kWh energy is Rs.5/-.
- 3. In a Textile Mill to minimize the lighting power consumption Conventional 9Watts loss Tube light Ballast was replaced with 2Watts loss Electronic Ballast and 40Watts Tube lights are replaced with 36Watts tube lights in 750Nos. of Single Lamp Tube Light Fittings. The cost of Electronic Ballast and 36Watts Tube lights are Rs. 225 and Rs.45/per unit. Calculate the Power and Energy Saving Potential, if the mill operates for 8000 Hours in a year. Also calculate the investment required and payback period for the above ENCON Proposal, when the Energy cost is Rs. 4.50 per kWh.

Course Outcome 5 (CO5)

- 1. Specify the role of Turbo chargers.
- 2. List the energy savings opportunities in an industrial DG Set plant.
- 3. The Specific Fuel Consumption of a 500KVA Diesel Generating Set is 3.2kWh per litre of Diesel at 40% Load Factor. If the Load Factor is improved from 40% to 70%, the Specific Fuel Consumption is 3.8kWh per litre of Diesel. Calculate the fuel saving per day because of the load factor improvement.

Course Outcome 6 (CO6)

- 1. Specify the advantages of energy efficient motors.
- 2. What is the function of Automatic Power factor controller?
- 3. A 500KVA 11KV/415V Transformer was proposed to buy for an Industrial application. The conventional Core Transformer Cost Rs. 2,50,000/-, whereas the Energy Efficient Amorphous core Transformer cost Rs.2,90,000/-. The Iron losses of Conventional and Amorphous core Transformers are 2200 Watts and 800Watts respectively. The copper losses for the both the transformers are same. Calculate the payback period for the excess investment paid for the Energy efficient Amorphous core transformer, when compared to conventional core Transformer. The cost of Electrical Energy is Rs.5 per kWh and the Transformer proposed to operate for 8760 Hours in a year.
- 4. A Chemical industry planned to install a Maximum Demand Controller and an Automatic Power Factor Controller to minimize the Demand Cost. The existing Contracted Demand is 4500KVA and actual demand is 4375KVA. The electricity board billing is based on 90% of contracted demand or Actual demand reached, whichever is higher. The demand charge is Rs.400 per KVA per month. The existing power factor is 0.92 lagging. After installing the Maximum Demand Controller and Automatic Power factor controller, the Actual Maximum Demand reached is 3900KVA. The investment incurred in the Demand Saving measure is Rs. 9,00,000/-. Calculate the Demand Cost saving per year and Payback period for the above Encon proposal.

Syllabus

Energy Management and Audit –Need of Energy Conservation, Energy Star Rating/Green Labeling, Energy Audit objective, Types of energy audit, Energy audit approach, understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, optimizing the input energy requirements, Fuel

and energy substitution, Simple Payback calculation, Energy Audit instruments, Role of Energy Manager

Electrical System – Electricity billing, Electrical load management and maximum demand control, Power factor improvement and its benefits, Selection and location of capacitors, Performance assessment of PF capacitors, Distribution and transformer losses. (Case Studies)

Electric Motors – Types, Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, Energy saving opportunities with energy efficient motors. (Case Studies)

Lighting – Light Source, Choice of lighting, Luminance requirements and energy conservation avenues. (Case Studies)

DG Set System – Factors affecting selection, Energy performance assessment of diesel conservation avenues. (Case Studies)

Energy Efficient Technologies in Electrical Systems – Maximum demand controllers, Automatic power factor controllers, Energy efficient motors, Soft starters with energy saver, Variable speed drives, Energy efficient transformers, Electronic Ballast, Occupancy sensors, Energy efficient lighting controls. Checklist & Tips for Energy Efficiency in Electrical System.

Learning resources

- 1. Book I General aspect of energy management and energy audit, Second Edition 2005, By Bureau of Energy Efficiency, Ministry of Power, India.
- 2. Book III Energy efficiency in electrical utilities, Second Edition 2005, By Bureau of Energy Efficiency, Ministry of Power, India.

Course Contents and Lecture Schedule

Module		No. of	Course
	Topic	Lecture	Outcome
No.		Hours	
1.0	Energy Management and Audit		
1.1	Need for Energy Conservation, Energy Star Rating, Energy	2	CO1
	Audit objective, Types of energy audit,		
1.2	Energy audit approach, understanding energy costs	2	CO1
1.3	Bench marking, Energy performance	1	CO1
1.4	Matching energy use to requirement, Maximizing system	2	CO1
	efficiencies, optimizing the input energy requirements, Role		
	of Energy Manager		
1.5	Fuel and energy substitution, Simple Payback calculation	2	CO1
	Energy Audit instruments		
2.0	Electrical System		
2.1	Electricity billing	2	CO2
2.2	Electrical load management and maximum demand control	1	CO2
2.3	Power factor improvement and its benefits, Selection and	2	CO2
	location of capacitors, Performance assessment of PF		
	capacitors		
2.4	Distribution and transformer losses	2	CO2
3.0	Electric Motors		

Module		No. of	Course
	Topic	Lecture	Outcome
No.		Hours	
3.1	Losses in induction motors, efficiency, Factors affecting motor performance	2	CO3
3.2	Rewinding and motor replacement issues	2	CO3
3.3	Energy saving opportunities with energy efficient motors	1	CO3
4.0	Lighting		
4.1	Light Source, Choice of lighting	1	CO4
4.2	Luminance requirements and energy conservation avenues	2	CO4
5.0	DG Set System		
5.1	Factors affecting selection	1	CO5
5.2	Energy performance assessment of diesel conservation avenues	1	CO5
6.0	Energy Efficient Technologies in Electrical Systems	1	
6.1	Maximum demand controllers, Automatic power factor controllers	2	CO6
6.2	Energy efficient motors	2	CO6
6.3	Soft starters with energy saver, Variable speed drives	1	CO6
6.4	Energy efficient transformers	2	CO6
6.5	Electronic Ballast, Occupancy sensors, Energy efficient lighting controls	1	CO6
6.6	Checklist & Tips for Energy Efficiency in Electrical System.	1	CO6
	Total	35	

Course Designers:

1. Dr.V.Saravanan vseee@tce.edu

2. Dr.D.Nelson Jayakumar dnjayakumar@tce.edu

18EERD0	OPERATION AND MAINTENANCE OF	Category	L	Т	Р	Credit
18EERDU	ELECTRICAL EQUIPMENT	PE	3	0	0	3

Preamble

This course will provide the possible technical and practical information required for ensuring correct operation, maintenance and troubleshooting of electrical equipment and systems such as transformer, motor, generator, substation, switchgear and transmission and distribution system.

Prerequisite

18EE320 - DC Machines and Transformers,

18EE420 -AC Machines

18EE510 - Generation, Transmission and Distribution

Course Outcomes

On the successful completion of the course, students will be able to

	Course Outcomes	Weightage %
CO1	Describe the causes of electrical accidents, safety measures, regulations and annual inspection of building installation.	15
CO2	Discuss the fundamentals of different types of maintenance, their procedures and records.	10
CO3	Identify the suitable earthing method and Calculate the earth resistance for a given electric system.	15
CO4	Select the suitable operation and maintenance practices for transformers, motors and starters	25
CO5	Identify the suitable operation and maintenance practices for Generation, Transmission and Distribution systems.	25
CO6	Select suitable troubleshooting practices for various electrical equipment and systems.	10

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Do	main Level	CDIO	Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale			-	(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.3, 2.3.1	,3.2.3
CO2	TPS2	Understand	Respond		1.3, 2.3.1	,3.2.3
CO3	TPS3	Apply	Value		1.3, 2.1.5	5,3.2.3
CO4	TPS3	Apply	Value		1.3, 2.1.5	5,3.2.3
CO5	TPS3	Apply	Value		1.3, 2.1.5	5,3.2.3
CO6	TPS3	Apply	Value		1.3, 2.1.5	5,3.2.3

Mapping with Programme Outcomes

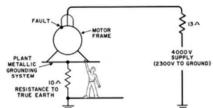
Cos	Р	PO	РО	PO	PO	PO	PO	PO	PO	P01	P01	PO1	PSO	PSO
	0	2	3	4	5	6	7	8	9	0	1	2	1	2
	1													

CO1	М	L			M	M		M	
CO2	М	L			М	М		М	
CO3		М	L		М	М		S	
CO4	S	М	L		М	М		S	
CO5	S	М	L		М	М		S	
CO6	S	М	L		М	М		S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continuous Assessment Tests			A	Terminal		
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	-	-	-	20
Understand	50	40	40	-	-	-	40
Apply	30	40	40	100	100	100	40
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-


Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

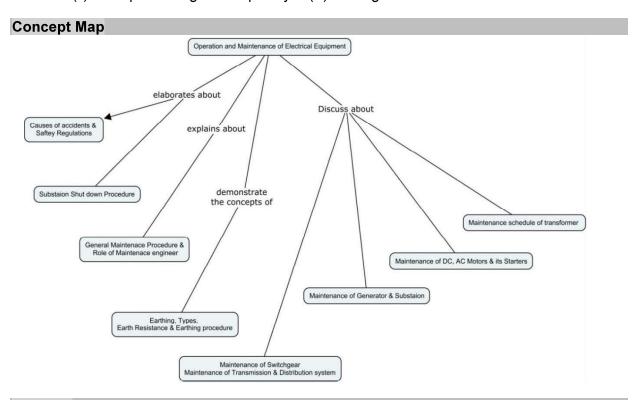
- 1) Specify the few safety regulations in Indian electricity act.
- 2) Explain the operation of different types of fire extinguishers.

Course Outcome 2 (CO2):

- 1) List the various data to be recorded in the History card of equipment.
- 2) Under which condition Production maintenance is preferred and explain its procedure? **Course Outcome 3 (CO3)**.
 - 1) Is it necessary to run a continuous earth wire on the overhead line posts? Why?
 - 2) Identify the effect on the human shown in the following system (shown in figure) with an exposed wire touches the motor frame (Fault).

3) Identify the solution to avoid the above mentioned accidents (As given in the above figure)

Course Outcome 4 (CO4)


- 1) How heavy a single phase load can be connected to a three phase transformer?
- 2) Connecting 3000 kVA and 1000 kVA transformers in parallel, each with 5.75% impedance, each with the same turn ratios, connected to a common 4000 kVA load. What is the loading on each transformer?
- 3) Identify the effects of voltage imbalance in a three phase motor.

Course Outcome 5 (CO5)

- 1) Summarize the substation shut down procedure.
- 2) Describe the effect of connecting two dc generators with different characteristics.
- 3) If the generators are not developing the armature voltage explain the causes.

Course Outcome 6 (CO6)

- 1) If a motor starter's overload mechanism trips frequently what action will you suggest?
- 2) Prepare an action plan, for the following complaints raised by a consumer.
 - (i) Abnormal Power Consumption,
 - (ii) Lamps burning out frequently & (iii) dim Light

Syllabus

Electrical Accidents and Safety: Causes of electrical accidents – Factors affecting severity of electrical shock - Actions to be taken when a person gets attached to live part - Safety regulations and safety measures- Indian electricity supply act 1948-1956; Factory Act -1948; Fire extinguishers- Building Electrical Installations – Annual Inspection, Safe working of Electrical Equipments- Electrical inspectorate's rules for operation and maintenance

Maintenance: Types and Importance of Plant maintenance, Preventive, Breakdown and Production - Preventive maintenance: need, classification, advantages, activities, Frequency of maintenance- Breakdown maintenance: concept, advantages - Maintenance Records, Role of Maintenance Engineer.

Earthing: Necessity of earthing - System earthing: advantage of neutral earthing of generator in power station; Equipment earthing: Objective - Types of earth electrodes - Methods of earthing: plate earthing, pipe earthing and coil earthing - Earthing in extra high voltage and underground cable, Earthing resistance- factors affecting, Determination of maximum permissible resistance of the earthing system - Comparison between equipment earthing and system grounding - Earthing procedure - Building installation, Domestic appliances, Industrial premises, Earthing of substation, generating station and overhead line.

Transformer, Motors (DC and AC) and Starters: Maintenance schedule of transformer: Insulation co-ordination and Impulse voltage testing-Lightning arrestor. Maintenance and Troubleshooting-Oil Purification & Testing.

Maintenance of DC, AC Motors and their Starters: – Operation, Routine and Breakdown Maintenance, Causes of failure, Precautions and Trouble shooting.

Generator and Substation : Maintenance of Generator: Operation, Routine and breakdown Maintenance, Causes of Failure and Precautions.

Maintenance of Substation: Operation, Routine and breakdown Maintenance, Causes of Failure and Precautions, Sub-station shut down procedure - certificate of requisition for shut down; certificate of Permit to work and certificate of Line clear - Instruction for the safety of persons working on a job with a permit to work.

Switchgears, Transmission and Distribution system: Maintenance of Switchgear: – Operation, Routine and breakdown Maintenance, Causes of Failure and Precautions. Maintenance of Transmission and Distribution system: – Rules for Low, Medium and High voltages, Factor of safety, precautions - Minimum Clearance, Conductors, System protection.

Learning resources

- 1. B.V.S.Rao, "Operation and Maintenance of Electrical Equipment", Volume I & II, 2008 Edition, Media Promoters & Publishers Pvt. Ltd., Mumbai.
- 2. S. Rao, "Testing Commissioning Operation and Maintenance of Electrical Equipments", Sixth Edition, Khanna Publishers, New Delhi, 2010.
- 3. Tarlok Singh, "Installation Commissioning and Maintenance of Electrical Equipments", First Edition, S. K. Kataria & Sons, 2013.
- 4. Paul Gill, "Electrical Power Equipment Maintenance and Testing", Second Edition, CRC Press. 2013.
- 5. https://www.weschler.com/wp-content/uploads/2020/01/gettingdowntoearth.pdf

Course Contents and Lecture Schedule

Module	Topic	No. of Lecture	Course Outcome
No.		Hours	
1.	Electrical Accidents and Safety		
1.1	Causes of electrical accidents – Factors affecting severity of electrical shock - Actions to be taken when a person gets attached to live part	1	CO1
1.2	Safety regulations and safety measures- Indian electricity supply act 1948-1956; Factory Act -1948	1	CO1
1.3	Fire extinguishers	1	CO1
1.4	Building Electrical Installations – Annual Inspection, Safe working of Electrical Equipments- Electrical inspectorate's rules for operation and maintenance	2	CO1
2	Maintenance		
2.1	Types and Importance of Plant maintenance, Preventive, Breakdown and Production - Preventive maintenance: need, classification, advantages, activities, Frequency of maintenance-	2	CO2
2.2	Breakdown maintenance: concept, advantages - Maintenance Records, Role of Maintenance Engineer	1	CO2

Module		No. of	Course
No.	Topic	Lecture	Outcome
INO.		Hours	
3.	Earthing		
3.1	Necessity of earthing - System earthing: advantage of neutral earthing of generator in power station; Equipment earthing: Objective - Types of earth electrodes	1	CO3
3.2	Methods of earthing: plate earthing, pipe earthing and coil earthing - Earthing in extra high voltage and underground cable, Earthing resistance- factors affecting	1	CO3
3.3	Determination of maximum permissible resistance of the earthing system - Comparison between equipment earthing and system grounding	2	CO3
3.4	Earthing procedure - Building installation, Domestic appliances, Industrial premises, Earthing of substation, generating station and overhead line.	1	CO3
4.	Transformer, Motors (DC and AC) and Starters		
4.1	Maintenance schedule of transformer :	3	CO4
4.2	Insulation co-ordination and Impulse voltage testing- Lightning arrestor.	3	CO4
4.3	Maintenance and Troubleshooting-Oil Purification & Testing.	2	CO6
4.4	Maintenance of DC, AC Motors and their Starters: – Operation, Routine and Breakdown Maintenance, Causes of failure, Precautions and Trouble shooting.	3	CO4 & CO6
5.	Generator and Substation		
5.1	Maintenance of Generator: Operation, Routine and breakdown Maintenance, Causes of Failure & Precautions.	3	CO5
5.2	Maintenance of Substation: Operation, Routine and breakdown Maintenance, Causes of Failure & Precautions.	2	CO5
5.3	Sub-station shut down procedure - certificate of requisition for shut down; certificate of Permit to work and certificate of Line clear - Instruction for the safety of persons working on a job with a permit to work.	1	CO6
6	Switchgears, Transmission and Distribution system		
6.1	Maintenance of Switchgear: – Operation, Routine & breakdown Maintenance, Causes of Failure and Precautions.	3	CO5
6.2	Maintenance of Transmission and Distribution system: – Rules for Low, Medium and High voltages,	2	CO5
6.3	Factor of safety, precautions - Minimum Clearance, Conductors, System protection	1	CO6
	Total	36	

Course Designers:

Dr. N.Shanmuga Vadivoo nsveee@tce.edu
 Dr.D.Nelson Jayakumar dnjayakumar@tce.edu

40555040	DEAL TIME ODERATING OVERTIME	Category	L	Т	Р	Credit
18EEPM0	REAL TIME OPERATING SYSTEM	PE	3	0	0	3

Preamble

Real-time systems are complex embedded systems that operate with real time constraints. Real time systems include automotive electronics, air traffic control, nuclear power plants, telecommunications, and robotics, etc. Most of the real time embedded systems use a real time operating system (RTOS) that determines which applications should run in what order and how much time should be allowed for each application before giving processor's or CPU's access to another application. The functions of the RTOS are to manage the sharing of internal memory among multiple tasks, to handle input and output to and from attached hardware devices such as serial ports, buses, and I/O device controllers and to send messages about the status of operation and any errors that may have occurred.

Prerequisite

18EE520- Microcontrollers

Course Outcomes

On the successful completion of the course, students will be able to:

COs No.	Course outcomes	Weightage in %
CO1	Explain the concepts underlying the real-time systems	10
CO2	Describe the basic functions in a real-time operating system	20
CO3	Explain the various interface functions used in real-time operating system for matrix keyboard interfacing	15
CO4	Outline the RTOS µCOS-II Programming concepts	15
CO5	Develop RTOS program for an automatic chocolate vending machine using µCOS-II	25
CO6	Develop RTOS program for digital camera using µCOS-II	15

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	ain Level	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Components	
	Scale	_		(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.3, 2.3.1 2.3.4
CO2	TPS2	Understand	Respond		1.3, 2.3.3

CO3	TPS2	Understand	Respond	1.3, 2.3.3
CO4	TPS3	Apply	Value	1.3, 2.5.4
CO5	TPS3	Apply	Value	1.3, 2.1.1, 2.1.5, 2.2.3,
				2.3.1, 2.4.3, 2.4.4, 2.5.4
CO6	TPS3	Apply	Value	1.3, 2.1.1, 2.1.5, 2.2.3,
				2.3.1, 2.4.3, 2.4.4, 2.4.7,
				2.5.4

M	Mapping with Programme Outcomes and Programme Specific Outcomes														
	COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
	CO1	М	L						М		М				М
	CO2	М	L						М		М				М
	CO3	М	L						М		М				М
	CO4	S	М	L					М		М				М
	CO5	S	М	L					М		М				S
	CO6	S	М	L					М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	As	Contin sessme	uous nt Tests		Assignme	Terminal	
Levels	1	2	3	1	2	3	Examinati
							on
Remember	20	20	20	-	-	-	20
Understand	30	30	30	-	-	-	30
Apply	50	50	50	100	100	100	50
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. What is the need for RTOS?
- 2. What are the types of real time system?
- 3. List the names of any four RTOSes.

Course Outcome 2 (CO2):

- 1. Define critical section of a task.
- 2. Write the operation done when the function OSSemPend () is executed.

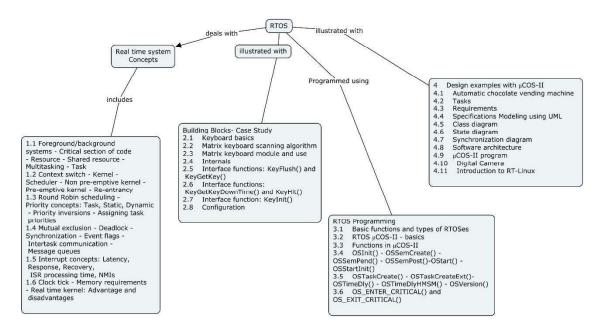
3. What is the function of a semaphore?

Course Outcome 3 (CO3):

- 1. Define auto-repeat in keyboard.
- 2. Draw the matrix keyboard driver flow diagram and explain.
- 3. Develop the 'C' code for matrix keyboard module.

Course Outcome 4 (CO4):

- 1. List the functions in µC/ OS-II for OS related operation and explain them.
- 2. List the functions in μ C/ OS-II for time management and explain them.
- 3. How semaphore is used to execute critical section of a task in a multitasking system?


Course Outcome 5 (CO5):

- 1. Show how the timer functions can be applied
 - a) to reduce the light level in a mobile phone with full brightness
 - b) to switch off the LCD display in a mobile phone after 15 seconds from the time it was switched on.
- 2. Draw an FSM model of an automatic chocolate-vending machine program. The machine permits only one type of coin, Rs. 1, one chocolate at a time and one chocolate cost is Rs. 8.
- 3. How will you create and display SMS message in T9 keypad of a mobile phone? Use the states, FSM model and state tables for all keys 0, 1 to 9 with T9 keypad. Use suitable templates.

Course Outcome 6 (CO6):

- 1.Explain the application of timer functions in digital camera.
- 2.Draw an FSM model of a digital camera.
- 3. Write the features of RT-Linux.

Concept Map

Syllabus

Introduction: Real-time system concepts - Foreground/background systems - Critical section of code - Resource - Shared resource - Multitasking - Task - Context switch - Kernel - Scheduler - Non preemptive kernel - Preemptive kernel - Reentrancy - Round Robin scheduling - Priority concepts: Task, Static, Dynamic - Priority inversions - Assigning task priorities - Mutual exclusion - Deadlock - Synchronization - Event flags - Intertask communication - Message queues - Interrupt concepts: Latency, Response, Recovery, ISR processing time, Non-maskable Interrupts (NMIs) - Clock tick - Memory requirements - Real time kernel: Advantage and disadvantages.

Interface Functions in RTOS – Case Study: Keyboard basics - Matrix keyboard scanning algorithm - Matrix keyboard module and use - Internals - Interface functions: KeyFlush(), KeyGetKey(), KeyGetKeyDownTime(), KeyHit(), KeyInit() - Configuration.

RTOS programming: Basic functions and types of RTOSes - RTOS μ COSII: basics - Functions in μ COSII - OSInit() - OSSemCreate() - OSSemPend() - OSSemPost() - OSStart() - OSTaskCreate() - OSTaskCreateExt() - OSTimeDly() - OSTimeDlyHMSM() - OSVersion() - OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL().

Design examples with \muCOS-II: Automatic chocolate vending machine - Tasks - Requirements - Specifications Modeling using UML - Class diagram - State diagram - Synchronization diagram - Software architecture - μ COS-II program - Digital Camera-Introduction to RT-Linux.

Learning Resources

- 1. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Second edition, Tata McGraw Hill, 2011.
- 2. Jean J. Labrosse, 'Embedded Systems Building Blocks', Second Edition, CMP Books, USA, 2000.
- 3. Phillip A. Laplante, Seppo A.Ovaska, Real Time Systems Design and Analysis, Tools for the Practisoner, fourth Edition, John Wiley Publishers, 2012.
- 4. Qin Li, Real time concepts for embedded systems, CRC Press, 2003
- 5. David E.Simon, "An Embedded Software Primer", Pearson Education, 2006
- μC/ OS-II,Second edition, Micrium Documenatation, https://doc.micrium.com/download/attachments/10753158/100-uC-OS-II-002.pdf
- 7. Introduction to RT-Linux (https://www.cis.upenn.edu/~lee/06cse480/lec-RTOS RTlinux.pdf)
- 8. https://www.freertos.org/index.html

Course Contents and Lecture Schedule

S.No.	Topics	No. of Lectures	Cos
1.	Introduction		
1.1	Real-time system concepts - Foreground/background systems - Critical section of code - Resource - Shared resource - Multitasking – Task	2	CO1
1.2	Context switch - Kernel - Scheduler - Non pre-emptive kernel - Pre-emptive kernel - Re-entrancy	2	CO1

1.3	Round Robin scheduling - Priority concepts: Task,	2	CO2
1.5	Static, Dynamic - Priority inversions - Assigning task	_	
	priorities		
1.4	Mutual exclusion - Deadlock - Synchronization - Event	2	CO2
'	flags - Intertask communication - Message queues	-	
1.5	Interrupt concepts: Latency, Response, Recovery, ISR	1	CO2
	processing time, NMIs	•	
1.6	Clock tick - Memory requirements - Real time kernel:	1	CO2
	Advantage and disadvantages		
2.	Interface functions in RTOS– Case Study		
2.1	Keyboard basics	1	CO3
2.2	Matrix keyboard scanning algorithm	1	CO3
2.3	Matrix keyboard module and use	1	CO3
2.4	Internals	1	CO3
2.5	Interface functions: KeyFlush() and KeyGetKey()	1	CO3
2.6	Interface functions: KeyGetKeyDownTime() and	1	CO3
	KeyHit()		
2.7	Interface function: KeyInit()	1	CO3
2.8	Configuration	1	CO3
3	RTOS programming		
3.1	Basic functions and types of RTOSes	1	CO4
3.2	RTOS µCOS-II - basics	1	CO4
3.3	Functions in µCOS-II	1	CO4
3.4	OSInit() - OSSemCreate() - OSSemPend() -	1	CO4
	OSSemPost()-OStart() - OSStartInit()		
3.5	OSTaskCreate() - OSTaskCreateExt()-OSTimeDly() -	1	CO4
	OSTimeDlyHMSM() - OSVersion()		
3.6	OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()	1	CO4
4	Design examples with μCOS-II	· · · · · · · · · · · · · · · · · · ·	
4.1	Automatic chocolate vending machine	1	CO5
4.2	Tasks	1	CO5
4.3	Requirements	1	CO5
4.4	Specifications Modeling using UML	1	CO5
4.5	Class diagram	1	CO5
4.6	State diagram	1	CO5
4.7	Synchronization diagram	1	CO5
4.8	Software architecture	1	CO5
4.9	μCOS-II program	2	CO5
4.10	Digital Camera	1	CO6
4.11	Introduction to RT-Linux	1	CO6
	Total	36	

Course Designers:

Dr.M.Saravanan mseee@tce.edu
 Dr.P.S.Manoharan psmeee@tce.edu

Category	L	Т	Р	Credit
PE	2	0	2	3

Preamble

An embedded system is a computer system with a dedicated function present within a larger electrical or electronics or mechanical system, often with real-time computing constraints. An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is specifically designed for a particular function. Industrial machines, automobiles, medical equipments, digital cameras, household appliances, airplanes, vending machines, toys, cellular phone and PDA are among the numerous possible hosts of an embedded system. Embedded systems that are programmable are provided with programming interfaces. In order to meet real time constraints, most of the embedded systems use a real-time operating system (RTOS). This course introduces the architecture, design and development process of embedded systems. The architecture and programming of ARM Cortex M4 microcontrollers (STM32407xx, TM4C123) are covered in this course.

Prerequisite

18EE520–Microcontrollers

Course Outcomes

On the successful completion of the course, students will be able to:

COs	Course outcomes	Weightage
No.		in %
CO1	Explain embedded system architecture, building blocks, software tools and design process.	20
CO2	Explain the architecture and function of on-chip peripherals (DMA, interrupt controllers, Clocks, RTC, WDT, I ² C, USART, SPI,SDIO) in ARM Cortex M4 (STM32407xx) Microcontroller	15
CO3	Explain the architecture and function of on-chip peripherals (DMA, interrupt controllers, RTC, Timers and watchdogs, CAN, USB, PWM, QEI) in TM4C123 Microcontroller.	15
CO4	Develop Embedded C programs for interfacing LED, LCD, Keyboard, 7-segment display, ADC, DAC with STM32407xx Microcontroller	20
CO5	Develop Embedded C programs for interfacing Bluetooth, Zigbee, Sensor modules with TM4C123 Microcontroller.	20
CO6	Develop mini project to solve real time problems using microcontrollers	10

CO Mapping with CDIO Curriculum Framework

C	C	TCE	Learr	ning Domair	n Level	CDIO Curricular Components
#		Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)

CO1	TPS2	Understand	Respond	1.3, 2.3.1
CO2	TPS2	Understand	Respond	1.3, 2.3.1
CO3	TPS2	Understand	Respond	1.3, 2.3.1, 2.4.3, 2.4.6
CO4	TPS3	Apply	Value	1.3, 2.1.1, 2.1.5, 2.4.4
CO5	TPS3	Apply	Value	1.3, 2.1.1, 2.3.1, 2.4.3, 2.4.4
CO6	TPS3	Apply	Value	1.3, 2.1.1, 2.3.1, 2.4.3, 2.4.4

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	М	L						М		М				М
CO 3	М	L						М		М				М
CO 4	S	М	L					М		М				S
CO 5	S	М	L					М		М				S
CO 6	S	М	L					М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

	Continuo	us Assessm	ent Tests	Practical	
Cognitive	1	2	3	Test	Terminal
Levels					Examination
Remember	40	40	20	-	20
Understand	60	60	40	-	40
Apply	0	0	40	100	40
Analyse	-	-	-	-	-
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	

Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Distinguish between GPP and ASIP.
- 2. What are the power down modes?
- 3. How the embedded systems are classified?
- 4. Write the need of RTC in embedded system.
- 5. Demonstrate the layers of an embedded system.
- 6. Demonstrate the process of converting C program into the file for ROM image.
- 7. Illustrate the various types of serial communication devices.

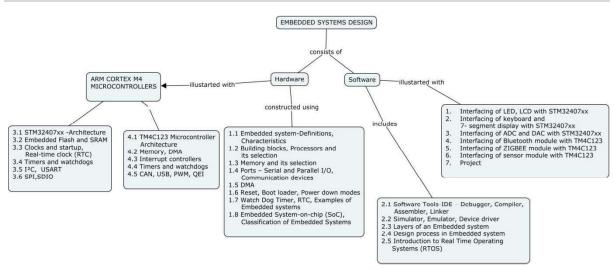
Course Outcome 2 (CO2):

- 1. Explain the architecture of STM32407xx Microcontroller.
- 2. Explain the different interrupts in STM32407xx Microcontroller.
- 3. Explain the operation of RTC and WDT in STM32407xx Microcontroller.
- 4. With neat diagram, explain the working of SPI interface in STM32407xx Microcontroller.

Course Outcome 3 (CO3):

- 1. Explain the architecture of TM4C123 Microcontroller.
- 2. Explain the different interrupts in TM4C123 Microcontroller.
- 3. Explain the operation of USB interface in TM4C123 Microcontroller.
- 4. With neat diagram, explain the working of CAN interface in TM4C123 Microcontroller.

Course Outcomes 4 & 5 (C04 & CO5):


The evaluation is based on the following experiments done in laboratory:

- 1. Interfacing of LED, LCD with STM32407xx Microcontroller
- 2. Interfacing of keyboard and 7- segment display with STM32407xx Microcontroller
- 3. Interfacing of ADC and DAC with STM32407xx Microcontroller
- 4. Interfacing of Bluetooth module with TM4C123 Microcontroller
- 5. Interfacing of ZIGBEE module with TM4C123 Microcontroller
- 6. Interfacing of sensor module with TM4C123 Microcontroller
- 7. DC motor / stepper motor speed control.

Course Outcome 6 (CO6):

- 1. In a shopping mall to count the customers, a counting device is required that increments every time when an enter key is pressed and the counter is reset by pressing a reset key. Develop a prototype using microcontroller.
- 2. Develop a prototype for lift controller.

Concept Map

Syllabus

EMBEDDED SYSTEMS: Definitions – Characteristics, Building blocks – Processors and its selection - Memory and its selection - Ports - Serial and Parallel I/O Communication devices - DMA - Reset - Boot loader - Power down modes - Watch Dog Timer - RTC - Examples of Embedded systems - Embedded System-on-chip (SoC) - Classification of Embedded Systems.

SOFTWARE TOOLS: IDE - Debugger - Compiler - Assembler - Linker - Simulator - Emulator - Device driver - Layers of an Embedded system - Design process in Embedded system - Introduction to Real Time Operating Systems (RTOS).

ARM CORTEX M4 MICROCONTROLLER: STM32407xx -Architecture - Embedded Flash and SRAM- Clocks and startup - Real-time clock (RTC) - Timers and watchdogs - I²C - USART - SPI - SDIO.

TM4C123 MICROCONTROLLER: Architecture — Memory - DMA - Interrupt controllers - Timers and watchdogs — CAN - USB - PWM - QEI.

EMBEDDED C PROGRAM: Interfacing of LED, LCD, Keyboard, 7-segment display, ADC, DAC, DC/Stepper Motor with STM32407xx Microcontroller- Interfacing of Bluetooth, Zigbee, Sensor modules with TM4C123 Microcontroller

Learning Resources

- 1. Raj kamal, 'Embedded Systems, Architecture, Programming and Design', Tata McGraw-Hill, second edition 2010.
- 2. D.P.Kothari, Shriram K.Vasudevan, Embedded Systems, New Age International Publishers, 2012.
- 3. ARM Cortex M4 (STM32407xx) Data sheet, ST Microelectronics.
- 4. ARM Cortex M4 (TM4C123) Data sheet, Texas Instruments.
- 5. Shibu K V, 'Introduction to Embedded Systems', Tata McGraw Hill Education Pvt. Ltd.
- 6. Frank Vahid and Tony Givargis, 'Embedded System Design: A Unified Hardware/Software Introduction', John Wiley & Sons, Inc. 2002.
- 7. Steve Heath, Embedded Systems Design, Second Edition, Elsevier, 2003.

Course Co	Course Contents and Lecture Schedule								
Module	Topic	No. of Lecture	Course						
No		Hours	Outcome						
1.	Embedded Systems								
1.1	Embedded systems Definitions, Characteristics	1	CO1						
1.2	Building blocks, Processors and its selection	1	CO1						
1.3	Memory and its selection	1	CO1						
1.4	Ports – Serial and Parallel I/O, Communication	1	CO1						
	devices								
1.5	DMA	1	CO1						

1.6	Reset, Boot loader, Power down modes	1	CO1
1.7	Watch Dog Timer, RTC, Examples of Embedded	1	CO1
	systems		
1.8	Embedded System-on-chip (SoC), Classification of	1	CO1
	Embedded Systems		
2	Software Tools		
2.1	IDE – Debugger, Compiler, Assembler, Linker	1	CO2
2.2	Simulator, Emulator, Device driver	1	CO2
2.3	Layers of an Embedded system	1	CO2
2.4	Design process in Embedded system	1	CO2
2.5	Introduction to Real Time Operating Systems	1	CO2
	(RTOS)		
3.	ARM Cortex M4 Microcontrollers		
3.1	STM32407xx -Architecture	1	CO3
3.2	Embedded Flash and SRAM	1	CO3
3.3	Clocks and startup, Real-time clock (RTC)	1	CO3
3.4	Timers and watchdogs	1	CO3
3.5	I ² C, USART	1	CO3
3.6	SPI,SDIO	1	CO3
4	TM4C123 Microcontroller		
4.1	Architecture	1	CO4
4.2	Memory, DMA	1	CO4
4.3	Interrupt controllers	1	CO4
4.4	Timers and watchdogs	1	CO4
4.5	CAN, USB, PWM, QEI	1	CO4
	Total	24	

Practical (24 Hours)

Design of Embedded System using STM32407xx/ TM4C123 Microcontroller

- 1. DC motor speed control and display of speed
- 2. Stepper motor speed control and display of speed
- 3. Temperature measurement and display
- 4. Measurement of power and energy
- 5. LED illumination control using PWM
- 6. Data communication using Ethernet/USB/CAN
- 7. Wireless data communication using Bluetooth/ ZIGBEE module
- 8. Measurement of position and pressure

Course Designers

- 1. mseee@tce.edu
 Dr.M.Saravanan
- 2. Dr.P.S.Manoharan psmeee@tce.edu

4075700	INDUSTRIAL ELECTRICAL AND	Category	L	Т	Р	Credit
18EERG0	ELECTRONICS	PE	3	0	0	3

Preamble

Industrial process control and production automation requires proficiency in industrial electrical and electronics. This is achieved by linking equipment such as PCs, PLCs, SCADA, distributed control systems and simple instrument together with data communications systems that are correctly designed and implemented. This course highlights the industrial controllers, networks and communication requirement for smart instrumentation.

Prerequisite

• Nil

Course Outcomes

On the successful completion of the course, students will be able to :

CO No	Course Outcomes	Weightage*** in %
CO1	Determine the performance of manufacturing engineering systems	10
CO2	Explain the basic subsystems and sequence of SPM and GPM machines	30
CO3	Explain the architecture of Industrial machine controllers	20
CO4	Develop efficient industrial design for all modern requirements.	10
CO5	Select, install and maintain the industrial protocols in most cost-effective manner for the plant.	20
CO6	Construct PLC ladder diagram for various industrial process control	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learr	ning Domair	n Level	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale	_		-	
CO1	TPS2	Understand	Respond	-	1.3, 2.1.1, 4.1.1, 4.1.2
CO2	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 4.1.1, 4.1.2
CO3	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 2.3.2, 4.1.2,
					4.3.1, 4.3.2
CO4	TPS3	Apply	Value	_	1.3, 2.1.2, 2.3.2, 2.3.3, 4.1.2,
					4.3.3, 4.3.4
CO5	TPS3	Apply	Value	_	1.3, 2.1.2, 2.3.2, 2.3.3, 4.1.2,
					4.3.3, 4.3.4
CO6	TPS3	Apply	Value		1.3, 2.1.5, 2.3.2, 2.3.3, 4.1.1,
					4.1.2, 4.3.3, 4.3.4, 4.5.5

CO Mapping with CDIO Curriculum Framework

CO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1.	М	L						М		М			М	М
CO2.	М	L						М		М			М	M
CO3.	М	L						М		М			М	М
CO4.	S	М	L					М		М			М	М
CO5.	S	М	L					М		М			М	М
CO6.	S	М	L					М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Contin	Continuous Assessment Tests			ssignm	Terminal Examination	
	1	2	3	1	2	3	
Remember	40	20	20	_	-	-	20
Understand	40	40	40	-	-	-	40
Apply	20	40	40	100	100	100	40
Analyze	-	-	-	-	_	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment**

Course Outcome 1 (CO1):

- 1. Calculate the takt time for producing 35000vehicles/month, assuming two shift operations with each shift working for 466 minutes?
- 2. Define Line balancing
- 3. Where do we use standard operation combination chart?

Course Outcome 2 (CO2):

- 4. Write the differences between special purpose machines and general purpose machines.
- 5. Explain "Through Coolant" system and its advantages.
- 6. Outline different components that are used in a machine tool to achieve different levels of safety.

Course Outcome 3 (CO3)

- 7. Draw the architecture of machine controllers for a Variable Frequency Drive.
- 8. Explain the operating principle of an inductive proximity sensor.
- 9. State the factors influencing the choice of transducer.

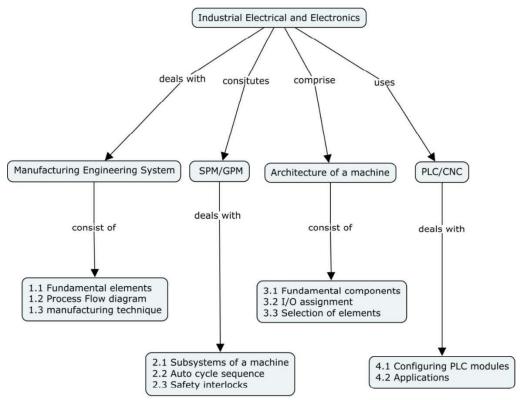
Course Outcome 4 (CO4)

- 1. Design and develop the ladder diagram for ON delay timer using PLC.
- 2. Develop ladder logic for semi automatic starter for starting of three phase induction motor using PLC.
- 3. A reamer is said to be fit for operating 5000 auto cycles. Once 4999 cycles are over PLC has to pop up an warning bit saying "Tool life over". Write ladder logic for tool life monitoring in a machine.

Course Outcome 5 (CO5)

- 1. You have two counters counting up-to 16, built from negative edge DFF, First circuit is synchronous and second is "ripple" (cascading), Which circuit has a less propagation delay? Why?
- 2. Analyse what will happen if there is setup time and hold time violation, how to overcome this?
- 3. Prepare the I/O list and write the ladder diagram considering the following statements. There are two cylinders available like main and small cylinders. Initially both the cylinders are at HOME (Back) condition. User has to actuate the main cylinder first from HOME to forward. By this time small cylinder will be in HOME. Then the small cylinder should be actuated forward for 5s. Then it has to come back to HOME. Finally main cylinder should come back to Home.

Programmer is given following elements to design the ladder.


- Main cylinder HOME proximity for its HOME position confirmation.
- Main cylinder FWD proximity for its FWD position confirmation.
- Small cylinder HOME proximity for its HOME position confirmation.
- A push button for Cycle start.
- Main Cylinder forward & reverse solenoid (Double coil solenoid)
- Small Cylinder forward & reverse solenoid (Double coil solenoid)
- Indication lamp for Home condition confirmation for both the cylinders.
- Indication Lamp for small cylinder in forward condition.

Course Outcome 6 (CO6)

- 1. Distinguish between general PLC and safety PLC.
- 2. Construct PLC ladder diagram for the following Boolean logic equation.
- 3. An electrical panel has to be connected to an external 3-Φ, 415V, 50Hz AC supply. Through a 16Amps MCCB.A 3-Φ induction motor to be connected with the 50Hz power supply. The motor has to be fully protected from over current and short circuit. Draw the power circuit of the motor.
 - The motor has to be switched on and off through a PLC using 2 push buttons Motor On and Motor off. A lamp has to indicate that motor is on. Write down the suitable ladder logic.

Y1 = A.B.
$$\overline{C}$$
.X. \overline{Z} + D. \overline{C} .X. \overline{Z}
= (A.B + D). \overline{C} .X. \overline{Z}

Concept Map

Syllabus

Manufacturing Engineering System: Batch, Cell concept, Individual part flow, Takt time, Process Time, Lead time, Cycle time, OEE, Process Flow diagram, Lean manufacturing technique and Six sigma overview

SPM/GPM: Basic Subsystems of a machine - Base & Columns, Fixture, Tooling's, Spindle, Slide ways, Hydraulics, Pneumatics, Lubrication, Cladding & Auto door, Coolant & Chip tray. Electrical - Control Cabinet, Servo drives, Operator console, HMI/MMI/Panel PC.

Auto cycle sequence - Auto Door movement, component clamp/de-clamp, Slide feed, Axes interpolation in a CNC machine, Automatic Tool Change, Metal cutting at regulated rpm, Cutting coolant and bed coolant. Safety interlocks- Levels of safety, redundancy levels and poka yoke used in machining process & power saving techniques

Architecture of machine controllers: Sensors & transducers, Actuators, Relays, contactor, power supply, fuse, Isolator, ELCB, MCB, MPCB, Controlling Induction motor from VFD, Servomotor& Servo drives, Encoders, Operator panel elements (Push button, Selector switch, lamp, HMI etc), PLC & CNC controllers. I/O assignment - Addressing Digital I/O, Analogue I/O & counter inputs for a machine based on application. Selection of elements for application control - PLC/CNC controller, HMI/MMI, sensors, transducers, actuators, motors, drives, Circuit breakers, power supply, relays, cables etc, Earthing/shielding of measuring

equipments, Techniques of electrical noise elimination while wiring, Symbols for electrical elements, design a control panel & operator panel using selected elements

PLC/CNC: Configuring PLC modules using ladder, Bit, Byte & words, addressing digital I/O signals, Concept of NO/NC elements, coils, flags, Boolean operation, AND/OR/NOT, Pulse triggered execution, serial, parallel and latch execution sequence, Relays, Counter, Timers, Registers, Mathematical and logical instructions, building tags. Addressing analogue I/Os in Ladder, Programming an analogue I/O block, Read/Write functions, Programming an encoder using counter block, Compare functions Examples of very commonly used safety logics/techniques, building poka yoke in ladder using peripheral sensors, power saving techniques.

Learning resources

- 1. Srinivas Medida, "Pocket Guide on Industrial Automation For Engineers and Technicians" first edition, IDC Technologies.
- 2. W. Bolton, "Programmable Logic Controllers", Newnes imprint of Elsevier, 2006
- 3. Frank D.Petruzella, "Programmable Logic Controllers", Fourth Edition McGraw-Hill, 2011

Course contents and Lecture schedule

S.	Topics	No. of	Course
No.	Topics	Hours	Outcome
1	Manufacturing Engineering System		
1.1	Batch, Cell concept, Individual part flow, Takt time, Process Time, Lead time, Cycle time, OEE	2	CO1
1.2	Process Flow diagram	2	CO1
1.3	Lean manufacturing technique and Six sigma overview	2	CO1
2	SPM/GPM		
2.1	Basic Subsystems of a machine: Base & Columns, Fixture, Tooling's, Spindle, Slide ways, Hydraulics, Pneumatics, Lubrication, Cladding& Auto door, Coolant & Chip tray, Electrical: Control Cabinet, Servo drives, Operator console, HMI/MMI/Panel PC	3	CO2
2.2	Auto cycle sequence: Auto Door movement, component clamp/de-clamp, Slide feed, Axes interpolation in a CNC machine, Automatic Tool Change, Metal cutting at regulated rpm, Cutting coolant and bed coolant,	4	CO2
2.3	Safety interlocks: Levels of safety, redundancy levels and poka yoke used in machining process & power saving techniques	3	CO2
3	Architecture of machine controllers		
3.1	Sensors & transducers, Actuators, Relays, contactor, power supply, fuse, Isolator, ELCB, MCB, MPCB, Controlling Induction motor from VFD, Servomotor & Servo drives, Encoders, Operator panel elements(Push button, Selector switch, lamp, HMI etc),PLC & CNC controllers,	5	CO3
3.2	I/O assignment: Addressing Digital I/O, Analogue I/O & counter inputs for a machine based on application.	2	CO4
3.3	Selection of elements for application control: PLC/CNC controller, HMI/MMI, sensors, transducers, actuators, motors, drives, Circuit breakers, power supply, relays, cables etc,	5	CO5

	Total	40	
4.2	Examples of very commonly used safety logics/techniques, building poka yoke in ladder using peripheral sensors, power saving techniques	4	CO6
4.1	Configuring PLC modules using ladder, Bit, Byte & words, addressing digital I/O signals, Concept of NO/NC elements, coils, flags, Boolean operation: AND/OR/NOT, Pulse triggered execution, serial, parallel and latch execution sequence, Relays, Counter, Timers, Registers, Mathematical and logical instructions, building tags, Addressing analogue I/Os in Ladder, Programming an analogue I/O block, Read/Write functions, Programming an encoder using counter block, Compare functions	6	CO6
4	PLC/CNC		
	Earthing/shielding of measuring equipments, Techniques of electrical noise elimination while wiring, Symbols for electrical elements, design a control panel & operator panel using selected elements		

Course Designers

Dr. B. Ashok Kumar ashokudt@tce.edu
Dr. G. Sivasankar gsivasankar@tce.edu

	TESTING & CERTIFICATION OF AUTOMOTIVE	Category	L	Т	Р	Credit
18EERH0	ELECTRICAL & ELECTRONIC SYSTEMS	PE	3	0	0	3

Preamble

This course gives an exposure to Indian Test standards and Test methods for automotive Electrical & Electronic components and Test standards & Compliance requirements for EMCs. This course also focuses on the Test set-up &Test Methods for HIL testing and various environmental requirements.

Prerequisite

18EEPQ0 – Automotive Electronics

Course Outcomes

On successful completion of the course, students will be able to

No	Course Outcomes	Weightage in
		%***
CO1	Explain Indian Test standards for homologation of 2W/3W.	20
CO2	Explain Indian Test standards & Test methods for Electrical & Electronic components.	25
CO3	Explain Indian Test standards & Compliance requirements for EMC	25
CO4	Explain HIL testing and Indian Test standards for Environmental requirements	10
CO5	Identify the category of vehicles for the given vehicle specifications and test specifications.	10
CO6	Calculate the parameters involved in various vehicle performance tests.	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Map	CO Mapping with CDIO Curriculum Framework									
CO	TCE	Learr	ning Domain I	_evel	CDIO Curricular					
	Proficiency	Cognitive	Affective	Psychomotor	Components					
	Scale			-	(X.Y.Z)					
	TPS2	Understand	Respond		1.3, 2.3.1,3.2.3					
CO1										
CO2	TPS2	Understand	Respond		1.3,2.3.1, 3.2.3,					
			-		3.2.5					
	TPS2	Understand	Respond		1.3, 2.3.1, 3.2.3					
CO3										

	TPS2	Understand	Respond	1.3, 2.3.1, 3.2.3
CO4				
CO5	TPS3	Apply	Value	1.3, 2.1.1, 2.1.4, 3.2.5, 4.3.1,4.4.1, 4.4.4
CO6	TPS3	Apply	Value	1.3, 2.1.1, 2.1.4, 3.2.5, 4.3.1,4.4.1, 4.4.4

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		M		L		М
CO 2	M	L						М		M		L		М
CO 3	М	L						М		М				М
CO 4	М	L						М		M				М
CO 5	S	M	L		L			М		M				М
CO 6	S	М	L		Ĺ			М		M				М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitiv	Continuo Tests	us As	sessment	Assignme	Termina		
e Levels	1	2	3	1	2	3	l Examin ation
Remem ber	40	40	40	-	-	-	40
Underst and	60	40	40	100	100	100	40
Apply	-	20	20	-	-	-	20
Analyse	-	-	-	-	-	-	-
Evaluat e	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Mention any two global standards for 2WEmissions

- 2. Mention any four parameters in Indian homologation requirements.
- What is meant by Type approval? 3

Course Outcome 2 (CO2):

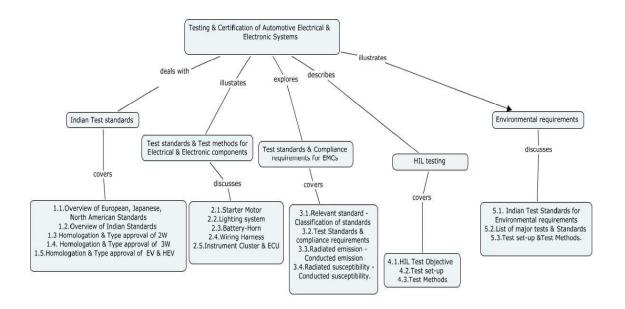
- Describe the Homologation test procedure for Lighting system of 2W.
- 2. Explain the Homologation test procedure for Horn of 2W
- Describe the Homologation test procedure for Emission of 2W Motor Cycle.

Course Outcome 3 (CO3):

- What is range of frequency band for radiated emission testing?
- 2. Describe the EMC test procedure in Open Air Test Site.
- Describe Bulk Current Injection Test procedure.

Course Outcome 4 (CO4):

- Mention any four standards used for environmental testing of electrical & Electronic parts.
- Explain thermal cycle test.
- Explain various applicable tests for wiring harness.


Course Outcome 5 (CO5):

- Find out the grading of the vehicle if the piston displacement is above 50cm3 and maximum speed is above 50 kmph.
- If the vehicle is used for carrying goods and having a mass exceeding 3.5t but not exceeding 12t, determine the category of the vehicle.
- 3. Find out the type of vehicle, if the horn decibel level is between 85 dB to 105

Course Outcome 6 (CO6):

- In the acceleration performance test, if the time taken to achieve a speed of 40 km/h or 75% of maximum speed is observed, find out the maximum speed of the vehicle.
- 2. In evaluation of brake performance of a two wheeler, if the maximum control force applied during the test is 330 N or 33 kg, determine the operating type of the vehicle.
- If the track is 4.2 km long with suitable banking at bends for speed up to 150 3. km/hr, determine the type of test track.

Concept Map

Syllabus

Indian Test standards

Overview of European, Japanese, North American Standards - Overview of Indian Standards -Homologation & Type approval of 2W & 3W, EV & HEV

Test standards & Test methods for Electrical & Electronic components : Test standards & Test methods for Electrical & Electronic components - Starter Motor, Lighting system, battery, Horn, Wiring Harness- Instrument Cluster & ECU

Test standards & Compliance requirements for EMCs: Relevant standard - Classification of standards – Test Standards & compliance requirements - Radiated emission - Conducted emission - Radiated susceptibility - Conducted susceptibility

HIL testing: HIL Test Objective- Test set-up - Test Methods

Environmental requirements : Indian Test Standards for Environmental requirements - List of major tests & Standards - Test set-up &Test Methods

Learning Resources

1) Study Material supplied by 'The Automotive Research Association of India' (ARAI), Pune.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Lecture	s Outcome
1.0	Indian Test Standards		
1.1	Overview of European, Japanese, North American	2	CO1
	Standards		
1.2	Overview of Indian Standards	2	CO1
1.3	Homologation & Type approval of 2W	2	CO1
1.4	Homologation & Type approval of 3W	2	CO5
1.5	Homologation & Type approval of EV & HEV	1	CO1
2.0	Test standards & Test methods for Electrical & Electronic components		
2.1	Test standards & Test methods for Electrical components - Starter Motor	3	CO2
2.2	Lighting system	3	CO2
2.3	Battery-Horn	2	CO5
2.4	Wiring Harness	2	CO2

2.5	Test standards & Test methods for Electronic components - Instrument Cluster & ECU	3	CO6
3.0	Test standards & Compliance requirements for EMCs		
3.1	Relevant standard - Classification of standards	1	CO3
3.2	Test Standards & compliance requirements	2	CO3
3.3	Radiated emission - Conducted emission	3	CO3
3.4	Radiated susceptibility - Conducted susceptibility	3	CO3
4.0	HIL testing		
4.1	HIL Test Objective	1	CO4
4.2	Test set-up	1	CO4
4.3	Test Methods	1	CO4
5.0	Environmental requirements		
5.1	Indian Test Standards for Environmental requirements	1	CO4
5.2	Test set-up &Test Methods	1	CO4
	Total		36

Course	Designer:

1)Dr.R.Medeswaran medes@tce.edu

2.Ms.R.Suganya rsaeee@tce.edu

3)SrinivasaRagavan TVSmotors

18EERL0		Category	L	Т	Р	Credit
IOEERLU	AUTOMOTIVE ELECTRICAL AND	PE	3	0	0	3
	ELECTRONICS PARTS	. –				

Preamble:

This course 'Manufacturing of automotive electrical and electronics engineering, a departmental Elective course, is preceded by courses "Utilization of Electrical energy", Basic Electrical and Electronics Engineering and 'Basics of Mechanical Engineering' The course mainly discusses the manufacturing process of different automotive electrical, Electronics and lighting parts and its implantation in the vehicle.

Prerequisite

Nil

Course Outcomes

SI. No	Course Outcomes	Weightage in %
CO1	Explain the Vehicle Integration and Mounting methods.	15
CO2	Explain the Routing methods, Fastening and Clearance/Interference fit	10
CO3	Design the Process flow, process specifications and Inspection methodologies for Starter Motor, relay and horn,	15
CO4	Design the Process flow, process specifications and Inspection methodologies for magneto, switches and wiring harness	20
CO5	Design the process flow of PCB fabrication process	25
CO6	Discuss the automotive lighting systems in the vehicle	15

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learning Dom	nain Level		CDIO	Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale				(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.3, 1.2	
CO2	TPS2	Understand	Respond		1.3, 2.1.1, 4.4.4	
CO3	TPS3	Apply	Value		1.3, 2.1.1, 4.4.4	
CO4	TPS2	Apply	Value		1.3, 2.1.1	
CO5	TPS2	Apply	Value		2.1.1, 4.4.4	
CO6	TPS2	Understand	Respond		1.3, 2.1.1	

M	Mapping with Programme Outcomes and Programme Specific Outcomes														
	CO	Р	PO	PO3	PO4	РО	P06	РО	PO8	PO9	PO1	PO1	PO12	PSO1	PSO2
	s	0	2			5		7			0	1			
	CO	М	L						М		М		M		М
	1														

CO	М	L				М	M	М	М
2									
CO	S	М	L			М	M	М	S
3									
CO	М	М	L			M	M	М	М
4									
CO	М	М	L			М	M	M	М
5									
CO	М	L				М	M	M	М
6									

Assessment Pattern: Cognitive Domain

Cognitive	Cont Tests	inuous Asse S	essment		Assignme	Terminal	
Levels	1	2	3	1	2	3	Examination
Remember	40	40	40	-	-	-	40
Understand	40	40	40	-	-	-	40
Apply	20	20	20	100	100	100	20
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Why is a rubber boot generally used for mounting an electronic unit on a vehicle frame?
- 2. How is a battery mounted on a vehicle frame?

Course Outcome 2 (CO2):

- 1. List the parts used for routing wiring harness along a vehicle frame.
- 2. Explain the process of fastening.

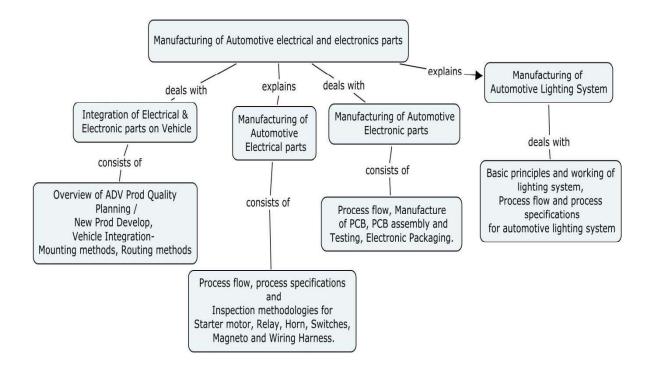
Course Outcome 3 (CO3):

- 1. How is a Starter Motor mounted on an engine
- 2. Explain the inspection methodologies of relay.
- 3. Design the process flow of manufacturing a starter motor.

Course Outcome 4 (CO4):

- 1. Design the process flow of manufacturing a switches.
- 2. Design the process flow of manufacturing of magneto.
- 3. Why is a corrugated tube used in a wiring harness?

Course Outcome 5 (CO5):


- 1. Design the process reflows of soldering process? How is it different from wave soldering?
- 2. How are PCBs tested for correct assembly and soldering at end of line?

Course Outcome 6 (CO6):

- 1. Explain the process of manufacturing a vehicle headlamp?
- 2. What are the critical process parameters that affect light intensity in a vehicle headlamp? How do they affect the light intensity?
- 3. What are the critical process parameters that affect light intensity in a vehicle headlamp? How do they affect the light intensity?

4.

Concept Map

Syllabus

Integration of Electrical & Electronic parts on Vehicle: Overview of ADV Prod Quality Planning /New Prod Develop, Vehicle Integration- Mounting methods, Routing methods, Fastening, Clearance/Interference fit.

Manufacturing of Automotive Electrical parts: Process flow, process specifications and Inspection methodologies for Starter motor, Relay, Horn, Switches, Magneto and Wiring Harness.

Manufacturing of Automotive Electronic parts: Process flow, Manufacture of PCB, PCB assembly and Testing, Electronic Packaging.

Manufacturing of Automotive Lighting System: Basic principles and working of lighting system, Process flow and process specifications for automotive lighting system

Learning Resources:

- 1. APQP Manual
- 2. Tom Denton, Automobile electrical and electronics systems, third edition, Elsevier Butterworth-Heinemann.

Course Contents and lecture schedule

S.No	Торіс	No of Lectures	СО
1.	Integration of Electrical & Electronic parts on Vehicle		
1.1	Overview of APQP/NPD	4	CO1
1.2	Vehicle Integration- Mounting methods	2	CO1
1.3	Routing methods, Fastening, Clearance/Interference fit	4	CO2
2.	Manufacturing of Automotive Electrical parts		
2.1	Process flow, process specifications and Inspection methodologies for Starter Motor	2	CO3
2.2	Process flow, process specifications and Inspection methodologies for Relay	2	CO3
2.3	Process flow, process specifications and Inspection methodologies for Horn	2	CO3
2.4	Process flow, process specifications and Inspection methodologies for Switches	2	CO4
2.5	Process flow, process specifications and Inspection methodologies for Magneto	3	CO4
2.6	Process flow, process specifications and Inspection methodologies for Wiring Harness	2	CO4
3.	Manufacturing of Automotive Electronic parts		

3.1	Process flow for manufacture of PCB	2	CO5
3.2	Methods of manufacturing of PCB	2	CO5
3.3	PCB assembly and Testing	2	CO5
3.4	Electronic Packaging	3	CO5
4.	Manufacturing of Automotive Lighting System		
4.1	Process flow for manufacturing automotive lighting system	2	CO6
4.2	Process specifications and Inspection methodologies for automotive lighting system	2	CO6
	Total	36	

Course designers:

1. Dr. S. Arockia Edwin Xavier

2. Prof.R.Suganya

- saexeee@tce.edu

-rsaeee@tce.edu

10EEDA0	CONTROL SYSTEM DESIGN	Category	L	Т	Р	Credit
18EEPA0	CONTROL STSTEM DESIGN	PE	3	0	0	3

Preamble

This course is to impart in students a good understanding of fundamental design principles in control engineering. The course covers design of continuous time and sampled data control systems using transfer function and state space based methods. A brief overview on digital implementation of PID controllers and common problems faced in the implementation are included. Emphasis is given for design using computer aided tools like MATLAB.

Prerequisite

- 18EE350 Signals and Systems
- 18EE440 Control Systems

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Design compensators/controllers using Root locus and for continuous time system to achieve given performance specifications	15
CO2	Design compensators/controllers using Bode plot for continuous time system to achieve given performance specifications	20
CO3	Analyse the time domain and frequency domain characteristics of a given sampled data system	30
CO4	Design digital controllers/ compensators using root locus and Bode plot for a discrete time system using computer tools	5
CO5	Calculate state feedback controller and observer gains using pole placement technique for continuous time and discrete time systems	20
CO6	Explain tuning and digital implementation of PID Controllers	10

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

СО	TCE	Leari	ning Domain	Level	CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale				(X.Y.Z)
CO1	TPS3	Apply	Value		1.3,2.1.1, 2.1.4, 3.2.5,
					4.3.1, 4.4.1, 4.4.4
CO2	TPS3	Apply	Value		1.3,2.1.1, 2.1.4, 3.2.5,
					4.3.1, 4.4.1, 4.4.4
CO3	TPS4	Analyse	Organize		1.3,2.1.1, 2.1.2, 2.1.3,
		-	_		4.3.1 4.3.3

CO4	TPS3	Apply	Value	1.3,2.1.1, 2.1.4, 3.2.5,
				4.3.1, 4.4.1, 4.4.4
CO5	TPS3	Apply	Value	1.3,2.1.1, 2.1.4, 4.3.1,
				4.4.1, 4.4.4
CO6	TPS2	Understand	Respond	1.3,2.1.1, 2.1.2, 2.1.3,
			-	4.3.1

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	РО	РО	РО	PO	РО	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L		L			М		М			S	S
CO 2	S	М	L		L			М		М			S	S
CO 3	S	S	М	L	L			М		М			S	S
CO 4	S	М	L		L			М		М			S	S
CO 5	S	М	L		L			М		М			S	S
CO 6	М	L						М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels	Continuous Assessment Tests			Assignment			Terminal Examination
	1	2	3	1	2	3	
Remember	10	10	10	-	-	-	10
Understand	30	30	30	-	-	-	30
Apply	60	60	60	100	60	100	60
Analyse	-	-	-	-	40	-	-
Evaluate	-	-	-	•	-	-	-
Create	-	-	-	-	_	-	_

Note: CO4 to be evaluated only through assignments

Assessment Pattern: Psychomotor

Psychomotor Skill	Mini project /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt	
Responses	

Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1(CO1):

- 1. Consider an unity feedback system with open loop transfer function $G(s) = \frac{K}{s(s+1)(s+2)}$. It is operating in closed with maximum peak overshoot of 16%. Calculate the gain and settling time corresponding to this overshoot. Design suitable compensator to reduce settling time to 80% of uncompensated system without changing overshoot.
- 2. Consider an unity feedback system with open loop transfer function $G(s) = \frac{10}{s(s+1)(s+2)}$. Design lag lead compensator using root locus to achieve
 - a. Settling time $t_s \leq 4s$
 - b. Max. Peak overshoot $M_p \le 20\%$
 - c. Velocity error constant $K_v \ge 20$

Course Outcome 2(CO2):

- 1. Consider a unity feedback system with plant transfer function $(s) = \frac{10K}{s(s+1)(s+10)}$. Design lead compensator using Bode plot to achieve velocity error constant $K_v \ge 20$ and Phase margin $\phi_m \ge 30^\circ$
- 2. Consider a unity feedback system with plant transfer function $G(s) = \frac{e^{-s}}{s(s+1)}$. Design lag lead compensator using Bode plot to achieve velocity error constant $K_v \ge 20$ and Phase margin $\phi_m \ge 30^\circ$

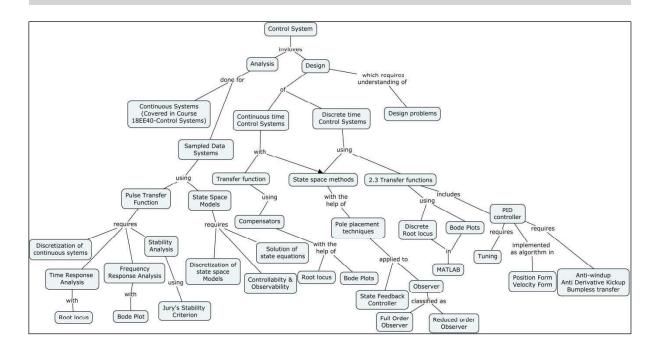
Course Outcome 3(CO3):

- 1. Using Jury's stability criterion determine the number of poles outside |z|=0.5 circle in the z-plane $\Delta(z)=2z^4+7z^3+10z^2+4z+1$
- 2. A unit impulse sequence $\delta_k=\{1,0,0,\cdots\}$ is applied to a system and the output is obtained as $y_k=\{0,0.5,1,1,\cdots\}$
 - a. Calculate the z transform of signal y(k)
 - b. Determine the pulse transfer function of the system $G(z) = \frac{Y(z)}{U(z)}$ and difference equation governing the system
 - c. Calculate the response of the system for unit step sequence.

Course Outcome 4 (CO4):

- Consider a continuous time system G(s)=1/s(s+1)(s+2). Choose suitable time period and discretize the system. Design suitable control scheme using Root locus in MATLAB to achieve following specifications
 - a. Settling time = 4s
 - b. Maximum peak overshoot < 16%
 - c. Velocity error constant $Kv \ge 20$
- 2. Consider a continuous time system $G(s) = \frac{e^{-s}}{s+1}$. Sampling period is 0.5s. Design suitable control scheme using Bode in MATLAB to achieve following specifications
 - a. Phase margin ≥ 45 °
 - b. Velocity error constant $Kv \ge 20$

c. Bandwidth not less than 4rad/s


Course Outcome 5 (CO5):

- 1. Consider the system $F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$ and $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Design a state feedback controller to obtain dead beat response.
- 2. Consider the system with $A = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & -2 & -3 \end{bmatrix}$ and $C = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}$ Design a reduced order observer with observer poles at s=-10 & s=-20

Course Outcome 6(CO6):

- 1. Explain the velocity form of PID controller
- 2. Explain any one anti-windup scheme

Concept Map

Syllabus

Design of continuous time control systems using Transfer functions:

Design problem, Realization of lag, lead and lag-lead compensators – Root locus based design of cascade compensators - Frequency domain design of cascade compensators – Design using MATLAB

Sampled Data Control Systems Analysis & Design:

Introduction to Sample data control systems –Sampling, Structure of discrete control system, advantages & disadvantages over continuous control, Discretization of continuous systems Effect of sampling on poles and zeros, Stability Analysis using Jury's Stability Criterion, Time domain analysis of sampled data systems, Frequency domain analysis of sampled data systems, Discretization of state space models, State transition matrix, Solution of state equations, Effect of sampling period on controllability and observability

Design of sampled data control systems in MATLAB:

Digital compensator design using Root locus plots, Digital compensator Design using frequency response plots

Design in State Space [Continuous & Discrete Systems]:

Pole placement by state feedback, Full order Observers, Reduced order observers, State Space design using MATLAB

PID Tuning, Digital Implementation and Practical Issues:

Tuning of PID controllers using Ziegler-Nichols, Cohen Coon and Relay oscillation methods, Position and Velocity form of PID, Pseudo code of PID controller, Bump less transfer, Integral Windup and Anti-windup schemes, Derivative Kick up and methods to overcome them.

Learning Resources

- **1.** I.J. Nagrath and M.Gopal, "Control Systems Engineering", 6th Edition, New Age International, 2017.
- **2.** M. Gopal, "Digital Control and State Variable Methods –Conventional and Intelligent Control Systems", 3rd edition, McGraw Hill Education, 2010.
- **3.** Norman.S.Nise, "Nise's Control System Engineering Wiley India Edition", Wiley India, 2018
- 4. Katsuhiko Ogata, "Discrete Time Control Systems", 2nd edition, Phi Learning, 2009.
- **5.** B.C. Kuo, and F.Golnaraghi, Automatic Control Systems, 9th Edition. Wiley India, 2014. (Student edition)
- **6.** Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Addison Wesley 12th Edition, 2014.
- **7.** Jacqueline wilkie, Michael Johnson and Reza Katebi,"Control Engineering: An Introductory Course ", Palgrave Publishers, edition 2003.
- **8.** Control Tutorials for MATLAB and Simulink: http://ctms.engin.umich.edu/CTMS/index.php?aux=Home

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No. 1	Design of continuous time control systems using 1	Hours	Outcome
-	Design problem, Realization of lag, lead and lag-lead	Talisiel Tulic	CO1
1.1	compensators	1	
1.2	Lead Compensator design using Root locus	1	CO1
1.3	Lag compensator design using root locus	1	CO1
1.4	Lag Lead compensator design using root locus	2	CO1
1.5	Lead Compensator design using Bode plot	2	CO2
1.6	Lag compensator design using Bode plot	1	CO2
1.7	Lag Lead compensator design using Bode plot	2	CO2
1.8	Feedback compensation	1	CO2
1.9	Design using MATLAB	1	CO2
2	Analysis of Sampled Data Control Systems		
	Introduction to Sample data control systems –		CO3
2.1	Sampling, Structure of discrete control system,	1	
	advantages & disadvantages over continuous control		
2.2	Discretization of continuous systems	1	CO3
2.3	Effect of sampling on poles and zeros, Stability	2	CO3
2.0	Analysis using Jury's Stability Criterion		

Module	Topic	No. of	Course
No.		Hours	Outcome
2.4	Time domain analysis of sampled data systems	2	CO3
2.5	Frequency domain analysis of sampled data systems	2	CO3
2.6	Discretization of state space models	1	CO3
2.7	State transition matrix, Solution of state equations	2	CO3
2.8	Effect of sampling period on controllability and observability	1	CO3
3	Design of sampled data control systems in MATLA	B:	
3.1	Digital compensator design using Root locus plots	1	CO4
3.2	Digital compensator design using frequency response plots	1	CO4
4	Design in State Space [Continuous & Discrete Systems of the Continuous & Discrete Sys	tems]	
4.1	Pole placement by state feedback	2	CO5
4.2	Full order Observers	2	CO5
4.3	Reduced order observers	1	CO5
4.4	State Space design using MATLAB	1	CO5
5	PID Tuning, Digital Implementation and Practical Issues:		
5.1	PID Tuning Methods	2	CO6
5.2	Position and Velocity form of PID controller, Pseudo code of PID controller	1	CO6
5.3	Bump less transfer, Integral Windup and Anti-windup schemes, Derivative Kick up and methods to overcome them	1	CO6
	Total	36	

Course Designers:

1. Mr.S.Sivakumar siva@tce.edu

2. Mr.M.Varatharajan varatharajan@tce.edu

18EEPB0	OPERATIONS RESEARCH	Ca
TOLLI DO	OF ENATIONS RESEARCH	PE

Category	L	Т	Р	Credit
PE	3	0	0	3

Preamble

Operational Research (OR) is a course to aid decision making and improving efficiency of the system by applying advanced analytical methods. It becomes a professional course that deals with the application of scientific methods for decision-making, and especially to the allocation of scare resources.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Formulate real-world problems as a programming model	10
CO2	Solve linear programming problems using graphical and simplex methods and perform sensitivity analysis	20
CO3	Solve transportation and assignment problems by various methods	15
CO4	Formulate inventory models and make optimal decisions	20
CO5	Develop dynamic programming stages for real world problems and find optimal solution.	15
CO6	solve Queuing models with infinite population	15
CO7	Explain the application of game theory models to make decisions	5

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dor	main Level		CDIO Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale			•	(X.Y.Z)
CO1	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.4.3,
					4.4.1
CO2	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.3,
					2.1.5, 2.4.4
CO3	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.3,
					3.2.5
CO4	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.3,
					2.4.7, 4.3.1
CO5	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.3
CO6	TPS3	Apply	Value		1.3, 2.1.1, 2.1.2, 2.1.
CO7	TPS2	Understand	Respond		1.3, 2.4.3, 2.4.6

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO	PO	PO	PO	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2

CO 1	S	М	L		M	M	S	S
CO 2	S	М	L		M	М	S	S
CO 3	s	М	L		M	M	М	S
CO 4	s	М	L		M	M	S	S
CO 5	s	М	L		M	M	S	S
CO 6	S	М	L		M	М	S	S
CO 7	М	L			M	M	М	М

S- Strong; M-Medium; L-Low

AssessmentPa	ttern: Co	gnitive	Domain				
Cognitive Levels	Ass	Continuous Assessment Tests			essment		Terminal Examinati
	1	2	3	1	2	3	on
Remember	10	10	10	-	-	-	10
Understand	30	30	30	-	-	-	30
Apply	60	60	60	100	100	100	60
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	_	-	_	-	-	_	-

AssessmentPattern: Psychomoto	ssessmentPattern: Psychomotor								
Psychomotor Skill	Miniproject/Assignment/Practical Component								
Departies									
Perception	-								
Set	-								
Guided Response	-								
Mechanism	-								
Complex Overt Responses	-								
Adaptation	-								
Origination	-								

Sample Questions for Course Outcome Assessment

Course Outcome1(CO1): 1. A company produce

- 1. A company produces two products, A and B. The sales volume for A is at least 80% of the total sales of both A and B. However, the company cannot sell more than 100 units of A per day. Both products use one raw material, of which the maximum daily availability is 240 lb. The usage rates of the raw material are 2 lb per unit of A and 4 lb per unit of B. The profit units for A and Bare \$20 and \$50, respectively. Develop a linear programming model to optimize the product mix.
- 2. Show & Sell can advertise its products on local radio and television (TV). The advertising budget is limited to \$10,000 a month. Each minute of radio advertising costs \$15 and each minute of TY commercials \$300. Show & Sell likes to advertise on radio at least twice as much as on TV. In the meantime, it is not practical to use more

than 400 minutes of radio advertising a month. From past experience, advertising on TV is estimated to be 25 times as effective as on radio. Determine the OR model for the optimum allocation of the budget to radio and TV advertising.

Course Outcome2(CO2):

- 1. An airline offers coach and first-class tickets. For the airline to be profitable, it must sell a minimum of 25 first-class tickets and a minimum of 40 coach tickets. The company makes a profit of \$225 for each coach ticket and \$200 for each first-class ticket. At most, the plane has a capacity of 150 travelers. How many of each ticket should be sold in order to maximize profits? Use graphical method.
- 2. Maximize $z = x_1+3x_2$ Subject to the constraints $-x_1+x_2 <=20$ $-2x_1+x_2 <=50$ $x_1,x_2 >=0$. Use simplex method.

Course Outcome3(CO3):

- 1. Three electric power plants with capacities of 25, 40, and 30 million kWh supply electricity to three cities. The maximum demands at the three cities are estimated at 30, 35, and 25 million kWh. The price per million kWh at the three cities is given in Table 5.6. During the month of August, there is a 20% increase in demand at each of the three cities, which can be met by purchasing electricity from another network at a premium rate of \$1000 per million kWh. The network is not linked to city 3, however. The utility company wishes to determine the most economical plan for the distribution and purchase of additional energy. (a) Formulate the problem as a transportation model. (b) Determine an optimal distribution plan for the utility company. (c) Determine the cost of the additional power purchased by each of the three cities.
- 2. JoShop needs to assign 4 jobs to 4 workers. The cost of performing a job is a function of the skills of the workers. The following table summarizes the cost of the assignments. Worker 1 cannot do job 3 and worker 3 cannot do job 4. Determine the optimal assignment using the Hungarian method.

		Job						
		1	2	3	4			
	1	\$50	\$50	_	\$20			
Wales.	2	\$70	\$40	\$20	\$30			
Worker	3	\$90	\$30	\$50	_			
	4	\$70	\$20	\$60	\$70			

Course Outcome 4 (CO4):

1. Acme Manufacturing Company has contracted to deliver horne windows over the next 6 months. The demands for each month are 100,250,190,140,220, and 110 units, respectively. Production cost per window varies from month to month depending on the cost of labor, material, and utilities. Acme estimates the production cost per window over the next 6 months to be \$50, \$45, \$55, \$48, \$52, and \$50, respectively. To take advantage of the fluctuations in manufacturing cost, Acme may elect to produce more than is needed in a given month and hold the excess units for delivery in later months. This, however, will incur storage costs at the rate of \$8 per window per month assessed on end-of-month inventory. Develop a linear program to determine the optimum production schedule.

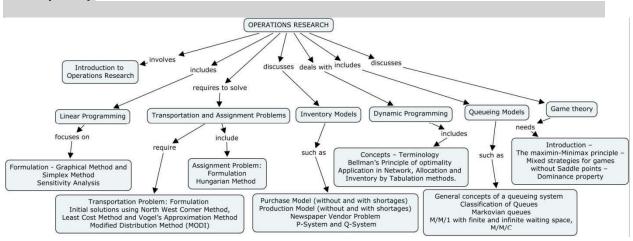
Course Outcome 5 (CO5):

1. A company has 8 salesman, who have to be allocated to four marketing zones. The return of profits from each zone depends upon the number of salesmen working in that zone. The expected returns for different number of salesmen in different zones, as

estimated from the past records, are given below. Determine the optimal allocation policy

No of salesmen	Marketing zones				
	1	2	3	4	
0	45	30	35	42	
1	58	45	45	54	
2	70	60	52	60	
3	82	70	64	70	
4	93	79	72	82	
5	101	90	82	95	
6	108	98	93	102	
7	113	105	98	110	
8	118	110	100	110	

2. Maximize Y= $3x_1+5x_2$ Subject to the constraints $3x_1+2x_2 <=18$ $x_1<=4$ $x_2 <=6$ $x_1,x_2 >=0$. Use dynamic programming.


Course Outcome 6(CO6):

- 1. A person repairing radios finds that the time spent on the radio sets has an exponential distribution with mean 20 minutes. If the radios are repaired in the order in which they come in and their arrival is approximately Poisson with an average rate of 15 for 8-hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average set just brought in?
- 2. Car arrive at a toll gate according to Poisson distribution with mean 90 per hour. Average time for passing through the gate is 38 seconds. Drivers complain of long waiting time. Authorities are willing to decrease the passing time through the gate to 30 seconds by introducing new automatic devices. This can be justified only if under the old system, the number of waiting cars exceeds 5. In addition, the percentage of the gate's idle time under the new system should not exceed 10%. Can the new device be justified?

Course Outcome 7(CO6):

- 1. Explain the different steps in Decision theory approach.
- 2. Compare Hurwicz criterion with Minimax criterion.

Concept Map

Syllabus

Introduction to Operations Research

Linear Programming

Linear Programming: Formulation - Graphical Method and Simplex Method - Sensitivity Analysis

Transportation and Assignment Problems

Transportation Problem: Formulation - Initial solutions using North West Corner Method, Least Cost Method and Vogel's Approximation Method - Modified Distribution Method (MODI)

Assignment Problem: Formulation - Hungarian Method

Inventory Models

Purchase Model (without and with shortages) - Production Model (without and with shortages) - Newspaper Vendor Problem - P-System and Q-System

Dynamic Programming

Concepts – Terminology – Bellman's Principle of optimality – Application in Network, Allocation and Inventory by Tabulation methods.

Queueing Models

General concepts of a queueing system - Classification of Queues - Markovian queues-M/M/1 with finite and infinite waiting space, M/M/C

Game theory

Introduction – The maximin-Minimax principle – Mixed strategies for games without Saddle points – Dominance property

Learning Resources

- 1. Hamdy A. Taha, "Operations Research An Introduction", MacMillan Co.,
- 2. Harvey M. Wagner, "Principles of Operations Research with Applications to Managerial Decisions", Prentice Hall international,
- 3. SingiresuS.Rao, "Engineering Optimization-Theory and Practice", New Age International,
- 4. Hiller / Lieberman, "Introduction to Operations Research" Tata McGraw Hill

Course Cor	ntents and Lecture Schedule		
Module	Topic	No. of	Course
No.		Hours	Outcome
0	Introduction: Operations Research	1	CO1
1	Linear Programming		
1.1	Linear Programming (LP): Formulation	2	CO1
1.2	Graphical Method for LP problems	2	CO2
1.3	Simplex and Dual Simplex Methods for LP problems	4	CO2
1.4	Sensitivity Analysis	2	CO2
2.	Transportation and Assignment Problems		
2.1	Transportation Problem(TP): LP Formulation	1	CO1
2.2	Initial Basic Feasible solutions	1	CO3
2.3	Optimal solution for TP using Modified Distribution Method	2	CO3
2.4	Assignment Problem (AP): Formulation	1	CO3
2.5	Hungarian Method for AP	1	CO3
3	Inventory Models		
3.1	Inventory models	1	CO4
3.2	Purchase Model (with and without shortages)	2	CO4
3.3	Production Model (with and without shortages)	2	CO4
3.4	Newspaper Vendor Problem	1	CO4
3.5	P-System and Q-System	1	CO4
4	Dynamic Programming		
4.1	Concepts – Terminology – Bellman's Principle of optimality	2	CO5
4.2	Application in Network, Allocation and Inventory by Tabulation methods	2	CO5
5	Queueing Models		
5.1	General concepts of a queueing system - Classification of Queues	1	CO6
5.2	Markovian queues- M/M/1 with finite and infinite waiting space	3	CO6
5.3	M/M/C	1	CO6
6	Game theory		CO7
6.1	Introduction – The maximin-Minimax principle	1	
6.2	Mixed strategies for games without Saddle points	1	CO7
6.3	Dominance property	1	CO7
	Total	36	

Course Designers:

Prof.S.Siva Kumar
 Dr. D.Kavitha

siva@tce.edu dkavitha@tce.edu

4055550	AUTOMOTIVE FUNDAMENTALS	Category	L	Т	Р	Credit
18EEPR0	AND MANUFACTURING	PE	3	0	0	3

Preamble

This course aims to provide knowledge on the construction and working of automobile subsystems, performance calculations, dynamics, vibration behaviour, process capabilities, process parameters, limitations and applications of various manufacturing processes.

Prerequisite

- Nil

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain construction and working of transmission, braking,	20
COT	steering and suspension systems of an automobile	
CO2	Determine performance calculations such as acceleration,	15
	gradeability, gear ratios	
CO3	Determine center of gravity, reactions, dynamics of two wheeled and four wheeled vehicle	15
CO4	Determine vibration behaviour of an automobile	15
CO5	Explain the various manufacturing process that are used for Automotive Parts manufacturing	20
CO6	Select suitable material and process for the given Automotive part	15

^{***} Weightage depends on Bloom's Level, number of contact hours.

CO Mapping with CDIO Curriculum Framework

СО	TCE	Le	arning Dom	ain Level	CDIO Curricular
#	Proficiency Scale	Cognitive	Affective	Psychomotor	Components (X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.1, 3.2, 4.1.2
CO2	TPS3	Apply	Value		1.3, 2.1, 3.2, 4.3.2, 4.3.3
CO3	TPS3	Apply	Value		1.3, 2.1, 3.2, 4.3.2, 4.3.3
CO4	TPS3	Apply	Value		1.3, 2.1, 3.2, 4.3.2, 4.3.3
CO5	TPS2	Understand	Respond		1.3, 2.1, 3.2, 4.1.2
CO6	TPS3	Apply	Value		1.3, 2.1, 3.2, 4.3.2, 4.3.3

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М			М	
CO 2	S	М	L					М		М			S	
CO 3	S	М	L					М		М			S	
CO 4	S	М	L					М		М			S	
CO 5	М	L						М		М			М	
CO 6	S	М	L					М		М			S	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

occoment atterm cogmitte bemain							
Cognitive	Continuous gnitive Assessment Tests				Terminal		
Levels	1	2	3	1	2	3	Examinat ion
Rememb er	10	10	10	-	-	-	20
Understa nd	40	20	40	-	-	-	30
Apply	50	70	50	100	100	100	50
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Mini project /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

1. Explain construction and working of single plate diaphragm clutch with neat

sketches.

- 2. What is double de-clutching?
- 3. Narrate the construction and working of fixed calliper disc brake system, with diagrams.

Course Outcome 2 (CO2):

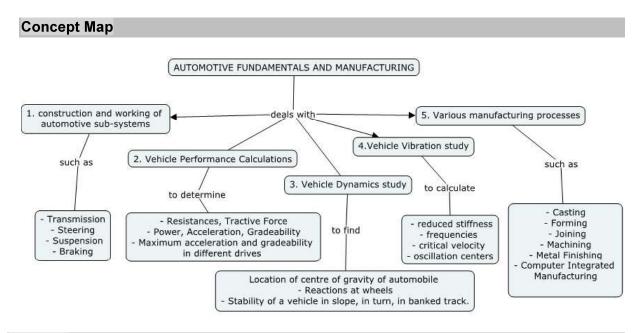
- 1. The coefficient of rolling resistance for a truck weighing 62293.5 N is 0.018 and the coefficient of air resistance is 0.0276 in the formula R= KW + K_aAV^2 , where A is in m^2 of frontal area, V the speed in km/h and R is in Newton. The transmission efficiency in top gear of overall gear ratio 6.2:1 is 90% and that in the second gear of 15:1 is 80%. The frontal area is 5.574 m^2 . If the truck has to have a maximum speed of 88 km/h in top gear, calculate:
 - i) the engine BP required ii) the engine speed if the driving wheels have an effective diameter of 0.8125 m; iii) the maximum grade the truck can negotiate at the above engine speed in second gear iv) The maximum drawbar pull available on level at the above engine speed in second gear.
- 2. A motor car which weighs 17795 N including the four road wheels each of which has an effective diameter of 0.66 m, a radius of gyration of 0.28 m and a weight of 294 N has an engine developing 66 kW at 2400 RPM. The parts which rotate at engine speed weigh 1069 N, with a radius of gyration 0.115 m. The transmission efficiency is 90% and the total road and air resistance at this engine speed in top gear of 3.84:1 is 873 N on level. Calculate the acceleration in m/s², under those conditions and assuming the acceleration to be uniform the time required to increase the speed by 32 km/h.
- 3. A motor car with wheel base 2.75 m with a centre of gravity 0.85 m above the ground 1.15 m behind the front axle has a coefficient of adhesion 0.6 between the tyre and the ground. Calculate the maximum possible acceleration when the vehicle is
 - (a) Driven on four wheels
 - (b) Driven on the front wheels only
 - (c) Driven on rear wheels only

Course Outcome 3 (CO3:

- 1. Explain how center of gravity of a two wheeler is determined experimentally.
- 2. With neat sketch, show the forces and moments acting on a vehicle taking turn.
- 3. With mathematical expression discuss the stability of a vehicle on a slope, on a banked track.

Course Outcome 4 (CO4):

- 1. Define "Degree of freedom". Give examples for single degree of freedom system and two degree of freedom system.
- 2. Obtain expressions for natural frequencies of undamped, combined bouncing and pitching. Also discuss on pitch and bounce centre.
- 3. The springs of a motor vehicle carry a total load of 11280 N with equal springing at front and rear. The combined spring rate is 88300 N/m. Calculate the frequency of vertical natural vibration with the dampers removed. If the dampers are adjusted to give a total damping force of 4415 N-s/m, calculate the frequency of damped vibrations


and the ratio of the second downward movement to the first downward movement.

Course Outcome 5 (CO5):

- 1. Mention the types of Metal Forming processes.
- 2. List the process that can be performed in a Lathe.
- 3. Discuss about the significance of Computer integrated manufacturing.

Course Outcome 6 (CO6):

- 1. Suggest suitable material and process along with justification for manufacturing of Connecting Rod.
- 2. Suggest suitable material and process along with justification for manufacturing of Helical Gears.
- 3. Suggest suitable material and process along with justification for manufacturing of Front Axles.

Syllabus

Construction and working of automotive systems — Construction and working of single plate and multi-plate clutch, sliding mesh, constant mesh and synchromesh gear box, Epicyclic Gear Train. CVT, Propeller shaft, final drive and differential, steering linkages, steering mechanism, leaf spring and coil spring suspension, mechanical, hydraulic brakes, drum and disc brakes.

Vehicle performance calculations - Determination of resistance, tractive force, power, acceleration, gradeability, gear ratios for an automobile, maximum acceleration, gradeability for different drives.

Vehicle Dynamics – Determination of centre of gravity of automobile, reactions at wheels, stability of a vehicle in slope, in turn, in banked track.

Vehicle Vibration - Front and rear suspension, reduced stiffness, preload, models with one, two and four degrees of freedom, modes of vibration in the plane, Determination of frequencies and critical velocity, oscillation centres.

Manufacturing processes - Casting - Sand Casting, Die Casting, **Forming -** Rolling, Forging, Extrusion, Sheet metal forming, **Joining -** Fusion and Solid state Welding, **Machining -** Lathe, Milling, Gear hobbing, **Metal Finishing -** Lapping, Honing, Coating.

Case Studies for each process – Automotive components such as drive shaft, gear box casing, piston, connecting rod, chassis frame, fuel tank,fasteners,etc.

Computer integrated Manufacturing – CAD, CAM, CAPP.

Learning Resources

- 1. N.K.Giri, "Automobile Mechanics", 8th Edition, Khanna Publishers, Delhi, 2013.
- 2. Kirpal Singh, "**Automobile Engineering**", Volume-1&2, 13th Edition, Standard Publishers Distributers, Delhi, 2017.
- 3. S.K.Hajra Choudury, Nirjhar Roy, A.K. Hajra Choudury, "Elements of workshop Technology", Vol-II, Machine Tools, Media Promoters and Publishers Pvt. Ltd, 2009.
- 4. Serope Kalpakjan and Steven R.Schmid, "Manufacturing Engineering and Technology", sixth edition, PHI, 2010.
- 5. Mikell P.Grover, "Fundamentals of Modern Manufacturing", Wiley India Third Edition Re-print, 2012.

Course Contents and Lecture Schedule

Module No.	Topic	No. of Hours	Course Outcome
1.	Construction and working of automotive sub-systems		
1.1	Construction and working of single plate	1	CO1
1.2	Construction and working of multi-plate clutch.	1	CO1
1.3	Working of sliding mesh gear box.	1	CO1
1.4	Working of constant mesh and synchromesh gear box. Epicyclic Gear Train	1	CO1
1.5	Working, merits and demerits of CVT.	1	CO1
1.6	Construction of propeller shaft with universal joints, final drive and differential.	1	CO1
1.7	steering linkages, steering mechanism,	1	CO1
1.8	Functions and construction of leaf spring and coil spring suspension.	1	CO1
1.9	Working of mechanical, hydraulic brakes, drum and disc brakes.	1	CO1
2.	Vehicle performance calculations		
2.1	Determination of resistance, tractive force, power	2	CO2
2.2	Determination of acceleration, gradeability	1	CO2
2.3	Determination of gear ratios for an automobile gear box	1	CO2
2.4	Calculation of maximum acceleration, gradeability for different drives	1	CO2
3.	Vehicle Dynamics		

3.1	Determination of centre of gravity of automobile	2	CO3
3.2	Calculation of reactions at wheels for three wheeled and four wheeled vehicle	1	CO3
3.3	Stability of a vehicle in slope, in banked track	1	CO3
3.4	Stability of a vehicle in turn	1	CO3
4.	Vehicle vibration		
4.1	Determination of reduced stiffness of front and rear suspension of two wheeled vehicles	2	CO4
4.2	Effect of pre-load in suspension, progressive suspension	1	CO4
4.3	models with one, two and four degrees of freedom, modes of vibration in the plane	1	CO4
4.4	Determination of frequencies and critical velocity for single and two degree of freedom system and oscillation centers.	2	CO4
5.	Manufacturing processes		
5.1	Casting – Sand Casting, Die Casting , case studies	2	CO5,CO6
5.2	Forming – Rolling, Forging, Extrusion, Sheet metal forming, case studies	2	CO5,CO6
5.3	Joining – Fusion and Solid state Welding, case studies	2	CO5,CO6
5.4	Machining – Lathe, Milling, Gear hobbing, case studies	2	CO5,CO6
5.5	Metal Finishing – Lapping, Honing, Coating, case studies	2	CO5,CO
5.6	Computer integrated Manufacturing – CAD,CAM,CAPP	2	CO5,CO
	TOTAL	36	

Course Designers:

Dr. A.Samuel Raja samuel1973@tce.edu (AUTOMOTIVE FUNDAMENTALS)
 Mr. M.Balamurali balacim82@tce.edu (MANUFACTURING)

18EERF0		Category	L	Т	Р	Credit
	INDUSTRIAL INSTRUMENTATION	PE	3	0	0	3

Preamble

Instrumentation is the science of automated measurement and control. It is a collective term for measuring instruments used for indicating, measuring and recording physical quantities. Applications of this science abound in modern research, industry, and even in household. From automobile engine control systems to home thermostats to aircraft autopilots to the manufacture of pharmaceutical drugs, automation surrounds us. This course covers some of the fundamental principles of industrial instrumentation.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the principle and operating characteristics of Force and torque measuring techniques	10%
CO2	Explain the principle and operating characteristics of Acceleration and Vibration measuring techniques	10%
CO3	Apply suitable technique for measurement of Flow and Level for a given application	30%
CO4	Explain the principle and operating characteristics of Viscosity measuring techniques	10%
CO5	Apply suitable technique for measurement of high temperature for a given application	20%
CO6	Apply suitable technique for measurement of Pressure for a given application	20%

CO Mapping with CDIO Curriculum Framework

СО	TCE	Lear	ning Domai	n Level	CDIO Curricular
#	Proficiency Scale	Cognitive	Affective	Psychomotor	Components (X.Y.Z)
CO1	TPS2	Understand	Respond		1.3
CO2	TPS2	Understand	Respond		1.3
CO3	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1
CO4	TPS2	Understand	Respond		1.3
CO5	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5, 2.3.1

CO6	TPS3	Apply	Value	 1.1, 1.2, 2.1.1, 2.1.5, 2.3.1

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	М	L						М		М				М
CO 2	М	L						М		М				М
CO 3	S	М	L					М		М				S
CO 4	М	L						М		М				М
CO 5	S	М	L					М		М				S
CO 6	S	М	L					M		M				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive				ious nt Tests	,	Terminal		
Levels	1	1 2 3		1	2	3	Examina tion	
Remember	20	20		20	-	-	-	20
Understand	80	50		50			50	
Apply	-	30		30	100	100	100	30
Analyse		-	-	-	-	-	-	-
Evaluate		-	-	-	-	-	-	-
Create		-	-	-	-	-	-	-

Assessment Pattern : Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-

Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 10. Explain the operation of pneumatic load cell with neat diagram.
- 11. Explain the types of Mechanical load cells.
- 12. Explain the principle of rotating torque measurement

Course Outcome 2 (CO2):

- 1. Draw the general block diagram of accelerometer.
- 2. Explain the principle and operation of piezoelectric Accelerometer.
- 3. What are the different methods used commonly for calibrations of vibration pickups?

Course Outcome 3 (CO3):

- 1. A venturi tube of throat diameter 10cm is placed in a pipe of diameter 20cm to measure the volumetric flow. The volumetric flow rate through venturi tube is $0.02 \frac{m^3}{sec}$. Water has the viscosity of 10^{-3} pas. Determine the Reynolds number and the upstream to throat differential pressure developed.
- 2. An incompressible fluid is flowing through an orifice plate with a flow coefficient of 0.6 causing a pressure drop of 400mm of water column. Calculate the fluid velocity.
- 3. Calculate the buoyancy force on an object that displaces $3 m^3$ of water at $20 ^{\circ}$ C.

Course Outcome 4 (CO4):

- 1. Define viscosity.
- 2. Explain the operation of Saybolt viscometer.
- 3. List the three physical principles used in Instruments for measuring viscosity.

Course Outcome 5 (CO5):

- 1. In a temperature measuring system with Chromel-Alumel thermocouple, the reference junction is maintained at 50°C. Find out the millivolt available as output if the hot junction temperature is 900°C.
- 2. A furnace wall 12 ft2 in area and 6-in thick has a thermal conductivity of 0.14 BTU/h ft°F. Estimate the heat loss if the furnace temperature is 1100°F and the outside of the wall is 102°F?
- 3. A total radiation pyrometer is used to measure furnace refractory wall temperature. The fumes and smoke along the path absorbs at 5% of radiant heat energy. The pyrometer reads 1100°C, what will be the actual wall temperature?

Course Outcome 6 (CO6):

- 1. The liquid in a well manometer has a specific weight of 40 lb/ft3. How far will the liquid rise in the smaller leg, if the pressure in the larger leg is 1.5 lb/ft2 higher than in the smaller leg?
- 2. Recommend the type of manometer for measuring the pressure inside a reheating furnace. Justify the same
- 3. In the U-tube manometer assume that filled liquid is mercury and h=500mm for all the cases, find out
 - a) The pressure difference p1-p2 in $\frac{kg}{cm^2}$
 - b) The pressure p1 in gauge and absolute scale if p2 is open to atmosphere in mmWG
 - c) The pressure p1 in gauge and absolute scale if p2 is evacuated and sealed in mmHg.

Concept Map Industrial Instrumentation includes measurement Force High Temperature Torque Acceleration Viscosity Pressure Vibration Level using using using Thermocouple Strain Gauge Relative Angular Twist Radiation methods Mechanical type vibration instruments Seismic instruments as acceleromete Vibration sensor Total radiation pyrometers Optical pyrometers Load cells Pressure Gauges based on Manometers LVDT, Hydraulic, Float gauges -Conductivity sensors, Boiler drum level measurement Differential pressure method Saybolt viscometer Rotameter type viscometer Elastic) Strain gauge Variable reluctance type acceleromet Capacitive strain gauge Piezoelectric principle

Syllabus

MEASUREMENT OF FORCE, TORQUE

Different types of load cells - Hydraulic, Pneumatic, strain gauge- Magneto-elastic and Piezoelectric load cells - Different methods of torque measurement: - Strain gauge-Relative angular twist

MEASUREMENT OF ACCELERATION & VIBRATION

Accelerometers LVDT, Piezoelectric, Strain gauge and Variable reluctance type accelerometers - Mechanical type vibration instruments - Seismic instruments as accelerometer - Vibration sensor - Calibration of vibration pickups

FLOW MEASUREMENTS

Orifice plate different types of orifice plates, Difference between area flow and mass flow meters, Venturi tube — Flow nozzle -- Principle and construction and details of Electromagnetic flow meter — Ultrasonic flow meters

LEVEL MEASUREMENT

Float gauges - Electrical types: Conductivity sensors, Boiler drum level measurement - Differential pressure method,

VISCOSITY MEASUREMENT

Viscosity — Saybolt viscometer-Rotameter type viscometer

HIGH TEMPERATURE MEASUREMENTS:

Special techniques for measuring high temperature using thermocouple -Radiation fundamentals - Radiation methods of temperature measurement - Total radiation pyrometers -Optical pyrometers

PRESSURE MEASUREMENT

Units of pressure - Manometers, different types, Elastic type pressure gauges Capacitive type pressure gauge

Learning Resources

- 1. Patranabis, D. Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill, New Delhi, 2010.
- 2. Doebelin, E.O.andManik,D.N., Measurement Systems Application and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.
- 3. Liptak, B.C., Instrumentation Engineers Handbook (Measurement), CRC Press, 2005.
- 4. Singh,S.K., Industrial Instrumentation and Control, 3rd edition, McGrawHill Education., New Delhi, 2015.
- 5. Jain, R.K., Mechanical and Industrial Measurements, 12th edition, Khanna Publishers, Delhi, 2011.

6. A. K. Sawhney, PuneetSawhney Course in Mechanical Measurements and Instrumentation and Control, Dhanpat Rai & Sons, New Delhi, 1997.

Course Contents and Lecture Schedule

Module		
No.	Topic	No. of Lectures
1	MEASUREMENT OF FORCE, TORQUE:	
1.1	Different types of load cells, Hydraulic, Pneumatic, strain	3
	gauge- Magneto-elastic and Piezoelectric load cells	
1.3	Different methods of torque measurement:- Strain gauge-	2
	Relative angular twist	
2	MEASUREMENT OF ACCELERATION, VIBRATION:	
2.1	Accelerometers: - LVDT, Piezoelectric,	1
2.2	Strain gauge and Variable reluctance type accelerometers	1
2.3	Mechanical type vibration instruments - Seismic instruments	2
	as accelerometer	
2.4	Vibration sensor - Calibration of vibration pickups	1
3	FLOW MEASUREMENTS:	
3.1	Orifice plate different types of orifice plates	3
3.2	Difference between area flow and mass flow meters	1
3.3	Venturi tube — Flow nozzle	2
3.4	Principle and constructional details of Electromagnetic flow	2
	meter	
3.5	Ultrasonic flow meters	1
4	LEVEL MEASUREMENT :	
4.1	Float gauges - Displacer type, DIP methods	1
4.2	Bubbler system-Load cell Electrical types: Conductivity sensors	1
4.3	Boiler drum level measurement - Differential pressure method	1
5	MEASUREMENT OF VISCOSITY:	
5.1	Viscosity	1
5.2	Saybolt viscometer	1
5.3	Rotameter type viscometer	1
6.1	HIGH TEMPERATURE MEASUREMENTS:	
	Special techniques for measuring high temperature using	2
	thermocouple	
6.2	Radiation fundamentals: Radiation methods of temperature	3
	measurement -	
6.3	Total radiation pyrometers , Optical pyrometers	2
7	PRESSURE MEASUREMENT:	
7.1	Units of pressure - Manometers, different types,	2
7.2	Elastic type pressure gauges	1
7.3	Capacitive type pressure gauge	1
	Total	36

Course Designers:

Dr.V.Prakash
 Prof. R. Suganya
 vpeee@tce.edu
 rsaeee@tce.edu

18EERJ0	OHALITY ENGINEEDING	Category	L	Т	Р	Credit
	QUALITY ENGINEERING	PE	3	0	0	3

Preamble

This course covers the foundations of modern methods of quality control and improvement that are used in the manufacturing and service industries. Quality is the key to surviving tough competition. Consequently, business needs technically competent people who are well-versed in statistical quality control and improvement. This course starts with the philosophy and fundamentals of quality control. It then deals with the statistical foundations of quality control. Statistical Process Control and acceptance sampling are then covered. This course also deals with product and process design including quality assurance, reliability and environmental requirements and introduces experimental design techniques. This course also demonstrates the use of computer software package, Minitab, for quality control and improvement exercises and R tools for statistical simulation.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course students will be able to

CO Number	Course Outcome Statement	Weightage*** in %
CO1	Explain the Philosophy behind Quality Engineering	10
CO2	Explain the fundamental concepts and standards of Quality Engineering	10
CO3	Estimate Quality characteristics using statistical concepts and techniques	20
CO4	Determine suitable control chart for a given statistical process control	30
CO5	Illustrate the basics of product quality in terms of Electrical and Electronics systems	15
CO6	Explain the basics of process quality in terms of Electrical, Electronics and software systems	15

^{***} Weightage depends on Bloom's Level, number of contact hours,

CO Mapping with CDIO Curriculum Framework

СО	TCE	Le	arning Dom	CDIO Curricular	
#	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale	_		-	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.1.1
CO2	TPS2	Understand	Respond		1.3, 2.1.1

CO3	TPS3	Apply	Value	1.3, 2.1.1, 2.1.2
CO4	TPS3	Apply	Value	1.3, 2.1.1, 2.1.2
CO5	TPS2	Apply	Value	1.3
CO6	TPS2	Understand	Respond	1.3

Mapping with Programme Outcomes and Programme Specific Outcomes

Со	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	S	М	L	L				М		М			М	
CO 2	S	М	L					М		М			М	
CO 3	S	М	М	L				М		М			М	
CO 4	S	М	L					М		М			М	
CO 5	S	М	L					М		М			М	
CO 6	М	L						М		М			М	

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Contin		Assessment sts	Assignment			Terminal	
Levels	1	2	3	1	2	3	Examination	
Remember	20	20	20	-	-	-	20	
Understand	50	50	80	-	-	-	50	
Apply	30	30	-	100	100	100	30	
Analyse	-	-	-	-	-	-	-	
Evaluate	-	-	-	-	-	-	-	
Create	-	-	-	-	-	-	-	

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Course Outcome 1(CO1):

- 1. Define Quality according to Juran and Deming's view.
 - 2. Discuss Juran's Triology.
 - 3. Explain Deming's 14 points of management

Course Outcome 2(CO2):

- 1. List the evaluation process of Quality control from 1920 to 1970 according to Feigenbaum.
- 2. Discuss the types of measurements scales used to classify data
- 3. List the features of 6 sigma quality standard.

Course Outcome 3(CO3):

1. Construct Cause and effect diagram for Edge flaws problem.

2. The % cost of quality for 12 projects are given below. Calculate the chance that a

project's % cost of quality will be within 15 ± 6 %

15.35 13.90 15.11 13.02 11.67 14.15 8.07 15.95 17.45 14.53 11.73 16.89						
8.07 15.95 17.45 14.53 11.73 16.89	15.35	13.90	15.11	13.02	11.67	14.15
	8.07	15.95	17.45	14.53	11.73	16.89

3. A study is undertaken to reduce the cost of quality to 0.2. During brainstorming, one of the team members suggested that wherever the rework effort / total effort < 0.07, those projects have cost of quality generally lower than 0.2. The data on cost of quality of projects with rework effort / total effort < 0.07 is given below. Validate the suggestion?

0.15	0.22	0.12	0.21	0.12	0.19	0.33
0.11	0.22	0.3	0.18	0.31	0.19	0.27

Course Outcome 4 (CO4)

1. The data given below are surface Finish values of 30 jobs after chromium plating. Construct an Individual X & Moving Range chart to monitor the process.

Conciliate an inaviadal X a moving hange chart to mornitor the process.									
0.078	0.079	0.077	0.076	0.074	0.072	0.069	0.075	0.078	0.077
0.075	0.078	0.08	0.081	0.08	0.079	0.082	0.073	0.078	0.074
0.072	0.075	0.068	0.073	0.074	0.081	0.076	0.08	0.074	0.07

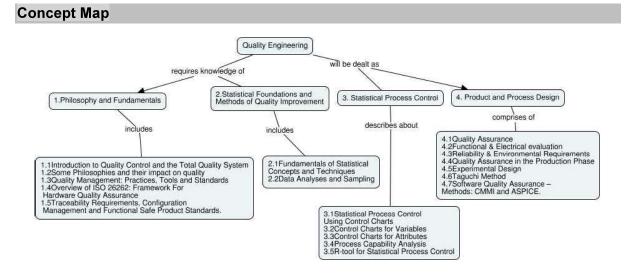
- 2. For the given data's
 - Calculate Control Limits
 - Plot Control Chart
 - Calculate Process Capability Indices (Pp/Ppk).

Monitor Process through plotting control chart.

Sample No.	Hour	x1	x2	x 3	x4
1	8:00	5.00	5.01	4.98	5.00
2	9:00	5.01	4.98	5.00	5.00
3	10:00	5.02	5.01	5.00	5.00
4	11:00	5.00	5.00	5.00	5.00
5	12:00	4.98	4.98	5.01	4.99

6	13:00	5.02	4.99	5.00	4.98
7	14:00	4.99	4.99	4.98	4.98
8	15:00	5.00	5.01	5.02	5.00
9	16:00	4.98	5.00	5.01	4.98

3. 20 data on acid content (mm) is given in the table below. If the specification on acid content is 0.70 ± 0.2 mm. Check whether the process has the potential to meet the customer requirement.


0.85	0.75	0.80	0.65	0.75	0.60	0.80	0.70	0.75	0.60
0.80	0.75	0.70	0.70	0.75	0.75	0.85	0.60	0.50	0.65

Course Outcome 5 (CO5)

- 1. Write the purpose of evaluation in Product design.
- 2. Explain the Philosophy behind APQP
- 3. Explain the electrical and electronics evaluation in terms of PCB.

Course Outcome 6 (CO6)

- 1. Outline electrical evaluation carried out in industrial automotive field.
- 2. Explain the functionality of Quality Assurance team activities.
- 3. Write the purpose of evaluation in Process design

Syllabus

Philosophy and Fundamentals

Introduction to Quality Control and the Total Quality System, Some Philosophies and their impact on quality, Quality Management: Practices, Tools and Standards, Overview of ISO 26262: Framework For Hardware Quality Assurance - Traceability Requirements, Configuration Management and Functional Safe Product Standards.

Statistical Foundations and Methods of Quality Improvement

Fundamentals of Statistical Concepts and Techniques, Data Analyses and Sampling.

Statistical Process Control

Statistical Process Control Using Control Charts, Control Charts for Variables, Control Charts for Attributes, Process Capability Analysis. R-tool for Statistical Process Control.

Product and Process Design

Quality Assurance, Functional & Electrical evaluation, Reliability & Environmental Requirements, Quality Assurance in the Production Phase, Experimental Design and the Taguchi Method, Software Quality Assurance – Methods: CMMI and ASPICE.

Learning Resources

- 1. A.Mitra, "Fundamentals of Quality Control and Improvement", Wiley, Fourth Edition, 2016
- 2. W.Fleischammer, "Quality by Design for Electronics", Chapman & Hall, First Edition, 1996
- 3. H.M.Wadsworth, K.S.Stephens and A.B.Godfrey, "Modern Methods for Quality Control and Improvement", John Wiley & Sons. 2nd Edition, 2004
- 4. M.S. Phadke, "Quality Engineering using Robust Design", Pearson, 2008.

Course Contents and Lecture Schedule

Module No.	Topic	No. of Hours	Course Outcome
1.	Philosophy and Fundamentals		
1.1	Introduction to Quality Control and the Total	2	CO1
	Quality System		
1.2	Some Philosophies and their impact on quality	2	CO1
1.3	Quality Management: Practices, Tools and	2	CO2
	Standards		
1.4	Overview of ISO 26262: Framework For Hardware	1	CO2
	Quality Assurance		
1.5	Traceability Requirements, Configuration	2	CO2
	Management and Functional Safe Product		
	Standards.		
2.	Statistical Foundations and Methods of Quality I	mprovement	
2.1	Fundamentals of Statistical Concepts and	2	CO3
	Techniques		
2.2	Data Analyses and Sampling	3	CO3
3	Statistical Process Control		
3.1	Statistical Process Control Using Control Charts	1	CO4
3.2	Control Charts for Variables	1	CO4
3.3	Control Charts for Attributes	2	CO4
3.4	Process Capability Analysis	2	CO4
3.5	R-tool for Statistical Process Control	3	CO4
4	Product and Process Design		
4.1	Quality Assurance	1	CO5
4.2	Functional & Electrical evaluation	2	CO5
4.3	Reliability & Environmental Requirements	2	CO5

Module No.	Topic	No. of Hours	Course Outcome
4.4	Quality Assurance in the Production Phase	2	CO6
4.5	Experimental Design	2	CO6
4.6	Taguchi Method	2	CO6
4.7	Software Quality Assurance – Methods: CMMI and ASPICE.	2	CO6
	Total	36	

Course Designers:

1. Dr. S. Charles Raja charlesrajas@tce.edu

2. Dr.R.Medeswaran medes@tce.edu

18EERK	DELIA DILITY ENGINEEDING	Category	L	Т	Р	Credit
	RELIABILITY ENGINEERING	PE	3	0	0	3

Preamble

This course is designed to provide an introduction to reliability engineering. Reliability engineering fulfils the need for a time-based concept of quality. Competition, the pressure of schedules and deadlines, the cost of failures, the rapid evolution of new materials, methods and complex systems, the need to reduce product costs, and safety considerations all increase the risks of product development. Reliability engineering has developed in response to the need to control these risks. Understanding of reliability engineering principles and methods is now an essential ingredient of modern engineering. This course starts by explaining the fundamental concepts of reliability engineering. It demonstrates how reliability engineering methods can be applied to design and development to control the level of risk. Reliability of electrical and electronic systems is dealt in detail. This course explains reliability testing and analysis covering environmental and stress testing and the integration of reliability and other development testing. This course also demonstrates reliability prediction using failure rate database including an introduction to computer simulation tools to predict electrical and electronic product and system reliability.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

СО	Course Outcomes	Weightage in %***
CO1	Explain the basic concepts of Reliability Engineering	15
CO2	Identify the reliability of Electrical systems	20
CO3	Illustrate the reliability prediction of	20
	Electronic systems	
CO4	Classify reliability testing and data analysis	20
CO5	Estimate the reliability of electrical and	15
	electronic systems using failure rate database	
CO6	Explain the importance of reliability in electric vehicles	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

CO	TCE	Learr	CDIO Curricular		
	Proficiency	Cognitive	Affective	Psychomotor	Components
	Scale	_		-	(X.Y.Z)
	TPS2	Understand	Respond		1.3, 2.3.1,3.2.3
CO1			-		

TPS3	Apply	Value		1.3, 2.1.1, 2.1.5,
				2.3.1, 2.4.4, 4.5.3
TPS2	Understand	Respond		1.3, 2.3.1, 3.2.3
		·		, ,
TPS3	Apply	Value		1.3, 2.1.1, 2.1.5,
	,			2.3.1, 2.4.4, 4.5.3
TPS3	Apply	Value		1.3, 2.1.1, 2.1.5,
				2.3.1, 2.4.4, 4.5.3
TPS2	Understand	Respond		1.3, 2.3.1,3.2.3
	TPS2 TPS3 TPS3	TPS2 Understand TPS3 Apply TPS3 Apply	TPS2 Understand Respond TPS3 Apply Value TPS3 Apply Value	TPS2 Understand Respond TPS3 Apply Value TPS3 Apply Value

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	PO1	PO1	PO1	PSO	PSO								
s	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	М	L						М		М			М	М
CO2	S	М	L					М		М			S	S
CO3	М	L						М		М			М	М
CO4	S	М	L					М		М			S	S
CO5	S	М	L					М		М			S	S
CO6	М	L						М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern- Cognitive Domain

Cognitiv	Cont Tests	inuous As	sessment	,	it	Termina	
e Levels	1	2	3	1	2	3	I Examin ation
Remem ber	20	20	20	-	-	-	20
Underst and	50	30	30	-	-	-	30
Apply	30	50	50	100	100	100	50
Analyse	-	-	-	-	-	_	-
Evaluat e	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Discuss why engineering products fail.
- 2. Define reliability. What is its relation to probability of failure?
- Suppose that the scores in an examination are normally distributed with mean μ = 76, standard deviation=15, the top 15% of students are A grade, bottom 10% are F grade. Find the minimum score to receive A Grade.

Course Outcome 2 (CO2):

 In a normal domestic kitchen containing a fluorescent light fitting and a washing machine, list the EMI sources you may find and how as a designer you may mitigate these effects.

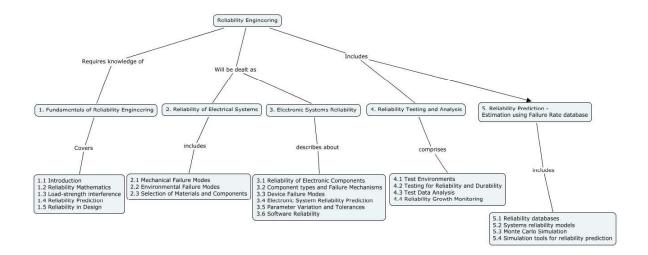
- 2. Write down the importance of Computer Aided Engineering and Environments in reliability design.
- 3. Write down the stress effects of current.

Course Outcome 3 (CO3):

- 1. You are designing an electronic unit that will be used on an agricultural machine. What failures might be caused by the vibration environment? What steps would you take to minimize these?
- Describe three methods for analyzing the effects of component parameter variations on the performance of an electronic circuit. For each, describe how the variations and their effects can be minimized by the designer.
- 3. For a small plastic transistor operating at 120mW, estimate Tj if Θ=0.4°C mW-1 above 25°C, if the ambient temperature is 50°C. If the maximum junction temperature is 150°C, estimate what power the transistor will dissipate at an ambient temperature of 60°C

Course Outcome 4 (CO4)

- 1. Explain the Highly Accelerated Life Testing.
- 2. Write down the main principles of effective vibration testing.
- 3. The first reliability qualification test on a new electronic test equipment generates 11 failures in 600h, with no one type of failure predominating. The requirement set for the production standard equipment is an MTBF of not less than 500h in service. How much more testing should be planned, assuming values for α of 0.3 and 0.5?


Course Outcome 5 (CO5)

- 1. Suppose that you have run a Monte Carlo analysis (m samples) and wish to cut the standard deviation in half. How many samples do you need to run?
- 2. Test the hypothesis that whenever several random variables are added together, the resulting sum tends to normal regardless of the distribution of the variables being added. Sample the sum of 10 random variables from different statistical distribution and test the normality of this sum by constructing the histogram or using other statistical tools.
- 3. An electric circuit current was modelled with 1000 experiments. The mean value of the outputs is 25 amps with the standard deviation of 8 amps. Estimate the number of runs required to achieve 1 % accuracy with 95 % confidence.

Course Outcome 6 (CO6):

- 1. Discuss the importance of reliability in Electric Vehicles.
- 2. What are the requirements of an EV battery to be reliable?
- 3. State the effects of failure of electric drive reliability in EV.

Concept Map

Syllabus

Fundamentals of Reliability Engineering

Introduction, Reliability Mathematics, Load-strength Interference, Reliability Prediction, Reliability in Design

Reliability of Electrical Systems

Mechanical Failure Modes, Environmental Failure Modes, Selection of Materials and Components.

Electronic Systems Reliability

Reliability of Electronic Components, Component types and Failure Mechanisms, Device Failure Modes, Electronic System Reliability Prediction, Parameter Variation and Tolerances, Software Reliability.

Reliability Testing and Analysis

test Environments, Testing for Reliability and Durability, Test Data Analysis, Reliability Growth Monitoring.

Reliability Prediction – Estimation using Failure rate database

Reliability databases, systems reliability models, Monte Carlo Simulation, simulation tools for reliability prediction.

Reliability of Electric Vehicle components

Importance of reliability in Electric Vehicle components - batteries - electric drives.

Learning Resources

- 1. Patrick D. T. O'Connor, "Practical Reliability Engineering", Fourth Edition, Wiley- India, 2006
- 2. E.E. Lewis, "Introduction to Reliability Engineering", Wiley, 1987
- 3. E. Balaguruswamy, "Reliability Engineering", Tata McGraw-Hill Publishing Co. Ltd., 1984
- 4. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980

Course Contents and Lecture Schedule

No.	TOPIC	No. of Lectures	СО
1	Fundamentals of reliability engineering		
1.1	Introduction	1	CO1
1.2	Reliability Mathematics	2	CO1
1.3	Load-strength Interference	1	CO1
1.4	Reliability Prediction	2	CO1
1.5	Reliability in Design	2	CO1
2.	Reliability of Electrical Systems		
2.1	Mechanical Failure Modes	2	CO2
2.2	Environmental Failure Modes	2	CO2
2.3	Selection of Materials and Components	2	CO2
3	Electronic Systems Reliability		
3.1	Reliability of Electronic Components	1	CO3
3.2	Component types and Failure Mechanisms	2	CO3
3.3	Device Failure Modes	2	CO3
3.4	Electronic System Reliability Prediction	1	CO3
3.5	Parameter Variation and Tolerances	1	CO3
3.6	Software Reliability	1	CO3
4	Reliability Testing and Analysis		
4.1	Test Environments	2	CO4
4.2	Testing for Reliability and Durability	2	CO4
4.3	Test Data Analysis	2	CO4
4.4	Reliability Growth Monitoring	1	CO4
5.	Reliability Prediction – Estimation using Failure rate database		
5.1	Reliability databases	1	CO5
5.2	Systems reliability models	1	CO5
5.3	Monte Carlo Simulation	1	CO5
5.4	Simulation tools for reliability prediction	1	CO5
6	Reliability of Electric Vehicle		
0.4	Components	4	000
6.1	Importance of reliability in Electric	1	CO6
	Vehicle components		
6.2	Reliability of batteries	1	CO6
6.3	Reliability of electric drives	1	CO6
	Total	36	

Course Designers:

S.Siva Kumar siva@tce.edu
 R.Medeswaran medes@tce.edu

3. P.S.Raghavan PS.Ragahavan@tvsmotor.co.in

4055000		Category	L	Т	Р	Credit
18EEPY0	POWER QUALITY	PE	3	0	0	3

Preamble

This course imparts knowledge about various electrical power quality issues and their origin and addresses the effects of power quality problems on electrical power system. It also emphasis need for PQ monitoring and measurement. The study on transient and power factor enables students to understand the characteristics and performance of the real system. The topic on introduction to mitigation devices gives solution for solving various PQ issues.

Prerequisite

18EE510 : Generation, Transmission and Distribution

18EE530: Power Electronics

Course Outcomes

On the successful completion of the course, students will be able to :

Course Outcome No.	Course Outcomes	Weightage*** in %
CO1	Explain various power quality problems	20
CO2	Discuss the root cause of power quality problems	30
CO3	Determine the PQ indices in the given electrical system	10
CO4	Assess the severity of PQ problems in distribution system	10
CO5	Analyze various power quality issues and their solutions in residential / commercial / industrial facilities	20
CO6	Develop an ability to analyse the measured data	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learr	ning Domair	n Level	CDIO Curricular Components
#	Proficiency	Cognitive	Affective	Psychomotor	(X.Y.Z)
	Scale				
CO1	TPS2	Understand	Respond	-	1.3, 2.1.1, 4.1.1, 4.1.2
CO2	TPS2	Understand	Respond	-	1.3, 2.1.1, 2.3.1, 4.1.1, 4.1.2
CO3	TPS3	Apply	Value	-	1.3, 2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1, 4.3.2
CO4	TPS3	Apply	Value	-	1.3,2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1, 4.3.2

CO5	TPS4	Analyze	Organise	-	1.3,2.1.5, 2.3.2, 2.3.3, 4.1.1, 4.1.2, 4.3.3, 4.3.4, 4.5.5
CO6	TPS3	Apply	Value	-	1.3,2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1, 4.3.2

Mapping with programme outcomes

CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	М	L						М		М			М	М
CO 2	М	L						М		М			М	М
CO 3	S	М	L					М		М			М	М
CO 4	S	М	L					М		М			М	М
CO 5	S	М	М					М		М			М	М
CO 6	S	М	М					М		М			М	М

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continu	Continuous Assessment Tests		A	ssignme	Terminal Examination	
	1	2	3	1	2	3	
Remember	20	10	10	-	-	-	10
Understand	40	40	40	-	-	-	40
Apply	40	30	30	100	50	50	30
Analyze	-	20	20	-	50	50	20
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Assessment Pattern: Psychomotor

Psychomotor Skill	Mini project /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-

Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. What is Power Quality?
- 2. What is the most common power quality Problem? Why has power quality only become an issue in recent years?
- 3. What are harmonics?
- 4. Define DC offset, Inter harmonics
- 5. Define voltage unbalance
- 6. What are the major power quality issues? Explain in detail

Course Outcome 2 (CO2):

- 1. What are the root causes of voltage sag?
- 2. List few sources that cause harmonics.
- 3. Name any two IEEE standards that define power quality.
- 4. Discuss about long and short duration voltage variations.
- 5. Discuss in detail about transients
- 6. Explain the following: a) Total harmonic distortion b) Total demand distortion

Course Outcome 3 (CO3):

- A highly inductive non linear load consumes 400 kW and 192 Kvar. The current THD is 27
 Find the true power factor.
- 2. Illustrate the impact of voltage sag on efficiency of the industrial equipments.
- 3. Illustrate various factors affecting the sag magnitude and when does voltage sag lead to interruption?

Course Outcome 4 (CO4):

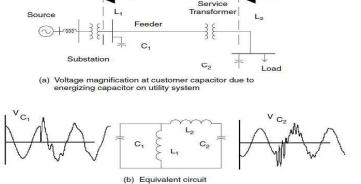
- 1. Suppose that a capacitor bank installed for reactive power compensation at a six pulse power converter applications to be tuned to fifth harmonic. Compute the required reactor size and verify whether capacitor bank operation fall within IEEE limits.
- 2. A waveform contains 50 Hz fundamental, plus 5rd, 9th, 11th, 13th harmonics with their magnitudes 0.3, 0.1, 0.05 and 0.01respectively. CalculateTHD.
- 3. Calculate the *k* rating of a transformer required to carry a load consisting of 1000 A of fundamental, 120 A of third harmonics, 80 A of fifth harmonics, and 40 A of seventh harmonics.

Course Outcome 5 (CO5):

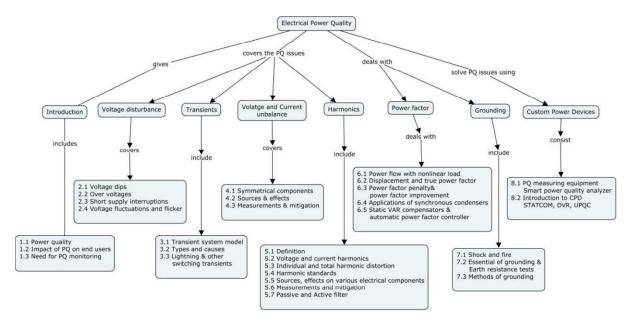
- 1. Investigate the filter requirement to attenuate the 5th, 7th, and 11th harmonics. Also design such that each filter section is tuned 4 percent below the filtered harmonic.
- 2. Examine the harmonic currents drawn from the line and design a filter to comply with IEEE-519, where the source is 277 V, line-to-neutral. The fundamental load current at 50 Hz is 100 A. This load also draws fifth-harmonic current $I_5 = 20$ A and seventh-harmonic current $I_7 = 15$ A.
- 3. Examine the capacitor bank requirement to improve the power factor from the present level to typically 0.9 to 0.95. Determine whether capacitor operating parameters fall within IEEE maximum recommended limits.

Course Outcome 6 (CO6):

- 1. A nonlinear industrial load has a rated power factor of 0.9, but the measuring device reads power factor as 0.81. Identify the reason and determine the root cause of the issue.
- 2. Calculate the following from the data given below:
 - a) kvar required to improve PF to 0.95 lag
 - b) Cost of additional capacitor
 - c) Reduction in kVA demand


Rating of transformer = 2000 kVA

Average loading on the transformer = 1200 kVA


Present power factor (old pf) = 0.7 (lag)

Unit cost of Capacitor/Kvar = Rs. 300

3. Identify the reasons for voltage magnification at the consumer end due to energizing capacitor on utility system. State the harmful impact of this scenario.

Concept Map

Syllabus

Introduction

Power quality - Impact of PQ on end users, Need for PQ monitoring, Various PQ problems

Voltage disturbances

Voltage dips, over voltages, short supply interruptions, voltage fluctuations and flicker - sources, effects, measurement and mitigation

Transients

Transient system model, examples of transient models and their response, power system transient model, types and causes of transients, lightning, other switching transients.

Voltage and Current Unbalance

Symmetrical components of currents and voltages, sources, effects, measurements and mitigation

Harmonics

Definition, odd and even harmonics, harmonic phase sequence, voltage and current harmonics, individual and total harmonic distortion, harmonic standards, sources, effects on various electrical components, measurements and mitigation, passive and active filters (Case Studies)

Power factor

Active and reactive power flow with nonlinear load, displacement and distortion power factor, power factor penalty, power factor improvement, applications of synchronous condensers and static VAR compensators, automatic power factor controller (Case Studies)

Effect of Grounding

Shock and fire hazards, essential of a grounded system, earth resistance tests, methods of grounding, effect of poor grounding on power quality.

Solving power quality problems using CPD

Power quality measuring equipment-Smart power quality analyzers, Introduction to custom power devices (CPD) – STATCOM, DVR, UPQC.

Learning Resources

- 1. Sankaran C,"Power Quality", CRC Press special Indian edition 2009.
- 2. Angelo Baggini, "Handbook of Power Quality" John Wiley & Sons Ltd, 2008.
- 3. Roger .C. Dugan, Mark F.Mcgranaghan & H.Wayne Beaty," Electrical power system Quality" McGraw-Hill Newyork Second edition 2003.
- 4. Barry W.Kennedy, "Power Quality Primer", McGraw-Hill, New York, 2000.
- 5. Math H.J.Bollen, « Understanding Power Quality Problems : Voltage Sags and Interruptions », IEEE Press, New York, 2000.
- 6. Arrillaga.J, Watson.N.R and Chen.S, « Power System Quality Assessment », John Wiley & Sons Ltd., England, 2000
- 7. Bhim Singh, Ambrish Chandra and Kamal Al-Haddad: Power Quality: Problems and Mitigation Technique, Wiley Publications, 2015
- 8. Arindam Ghosh and Gerald Ledwich: Power Quality Enhancement Using Custom Power Devices, Kluwer Academic Publishers, 2002.
- 9. G.T.Heydt: Electric Power Quality, 2nd edition, Stars in a Circle Publications, 1994.
- 10. Math H.J.Bollen, "Understanding Power Quality Problems: Voltage Sags and Interruptions", IEEE Press, New York, 2000.

Course contents and Lecture schedule

SI	Topic	No. of	Course
No.		Hours	Outcome
1	Introduction		

1.1	Power quality	1	CO1
1.2	Impact of PQ on end users	1	CO2
1.3	Need for PQ monitoring	1	CO6
2	Voltage disturbances		
2.1	Voltage dips	1	CO3
2.2	Over voltages	1	CO3
2.3	Short supply interruptions	1	CO2
2.4	Voltage fluctuations and flicker	1	CO2
3	Transients		
3.1	Transient system model, examples of transient models and	2	CO1
3.2	their response, power system transient model Types and causes of transients	1	CO1
3.2		1	CO2
3.3	Lightning, other switching transients	I	CO2
4.1	Voltage and Current Unbalance	1	602
	Symmetrical components of currents and voltages,	1	CO3
4.2	Sources & effects	1	CO2
4.3	Measurements and mitigation Harmonics	1	CO3
5		1	001
5.1	Definition, odd and even harmonics, harmonic phase sequence	1	CO1
5.2	Voltage and current harmonics	1	CO1
5.3	Individual and total harmonic distortion	1	CO4
5.4	Harmonic standards	1	CO4
5.5	Sources, effects on various electrical components	1	CO2
5.6	Measurements and mitigation	1	CO6
5.7	Passive and Active filter	1	CO5
6	Power factor		
6.1	Active and reactive power flow with nonlinear load	1	CO2
6.2	Displacement and distortion power factor	1	CO2
6.3	Power factor penalty, power factor improvement	1	CO5
6.4	Applications of synchronous condensers	1	CO5
6.5	Static VAR compensators, automatic power factor controller	2	CO5
7	Grounding		
7.1	Shock and fire	1	CO1
7.2	Essential of grounding, Earth resistance tests	1	CO6
7.3	Methods of grounding	1	CO5
7.4	Effect of poor grounding on power quality	1	CO5
8	Solving power quality problems using CPD		
8.1	Power quality measuring equipment, Smart power quality analyzer	2	CO6
8.2	Introduction to custom power devices –STATCOM, DVR, UPQC	3	CO5
	Total	36	

Course Designers

Dr.V.Suresh kumar vskeee@tce.edu

Dr.G.Sivasankar gsivasankar@tce.edu

4055570	CDECIAL MACHINEC AND DDIVEC	Category	L	Т	Р	Credit
18EEPZ0	SPECIAL MACHINES AND DRIVES	PE	3	0	0	3

Preamble

This course aims to impart in students, a good understanding of fundamental principles of different types of special machines. The course includes constructional details, operating principles, motor characteristics, microprocessor based controllers and applications of various types of special machines.

Prerequisite

- 18EE320 DC Machines and Transformers
- 18EE420- AC Machines

Course Outcomes

On the successful completion of the course, students will be able to

Course OutcomeNo.	Course Outcomes	Weightage in %
CO1.	Illustrate the basic construction and operating principle of Synchronous Reluctance Motor, SRM, Stepper motor, PMSM, PMBLDC Motor and Linear Induction Motor.	25
CO2.	Explain the motor characteristics, power input and torque developed for Synchronous Reluctance Motor, SRM, Stepper motor, PMSM and PMBLDC Motor.	25
CO3.	Develop the drive systems and control schemes for Stepper motors, SRM,PMSM and PMBLDC Motor.	20
CO4.	Develop a suitable special purpose motor drive for the specific application	10
CO5.	Explain the Microprocessor/ DSP based control of Stepper motors, SRM,PMSM and PMBLDC Motor.	10
CO6.	Analyse the performance of a drive system using Matlab-Simulink	10

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dom	ain Level		CDIO	Curricular
#	Proficiency	Cognitive	Affective	Psychomotor	Components	
	Scale	-			(X.Y.Z)	
CO1	TPS2	Understand	Respond		1.2.5, 2.1.1,	2.1.5, 2.3.1,
					2.4.4,3.2.3	
CO2	TPS2	Understand	Respond		1.2.5, 2.1.1,	2.1.5, 2.3.1,
					2.4.4, 3.2.3	
CO3	TPS3	Apply	Value		1.2.5, 2.1.1,	2.1.5, 2.3.1,
					2.4.4, 3.2.3	
CO4	TPS3	Apply	Value		1.2.5, 2.1.1,	2.1.5, 2.3.1,
					2.4.4, 3.2.3	
CO5	TPS2	Understand	Respond		1.2.5, 2.1.1,	2.1.5, 2.3.1,
					2.4.4, 3.2.3	

CO6	TPS5	Analyze	Organise	Complex	1.2.7, 2.1.1, 2.1.4, 2.1.5,
				Overt	2.3.1, 2.4.4, 3.2.3
				Responses	

Mapping with Programme 0	Outcomes and Proc	gramme Specific	Outcomes
mapping man regramme	- a a	J. W	

COs	РО	PO	PO	РО	PO	PO	PO	PO	PO	P01	P01	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	М	L						М		М			М	
CO2	М	L						М		М			М	
CO3	S	М	L					М		M			S	
CO4	S	М	L					М		М			S	
CO	М	L						М		М			М	
CO6	S	S	М	М	S			М		М			S	
•														

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Continu Tests	ous Asse	essment	Assignment			Terminal
Levels	1	2	3	1	2	3	Examination
Remember	20	20	20	-	-	-	10
Understand	60	50	50	-	-	-	60
Apply	20	30	30	-	-	-	30
Analyse	-	-	-	100	100	100	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

Note: Assignment topics are based on analysis of the performance of special purpose motor drives using Matlab-Simulink.

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Illustrate the construction and working principle of a synchronous reluctance motor.
- 2. Explain the working principle of Linear Induction motor.
- 3. Explain the various operating modes of SR motor with neat diagrams.

Course Outcome 2 (CO2):

- 1. How do you obtain the current-flux linkage characteristics of a SRM?
- 2. Explain the torque-speed characteristics of a BLDC motor.
- 3. Derive the expression for power input and torque of a PMSM.

Course Outcome 3 (CO3)

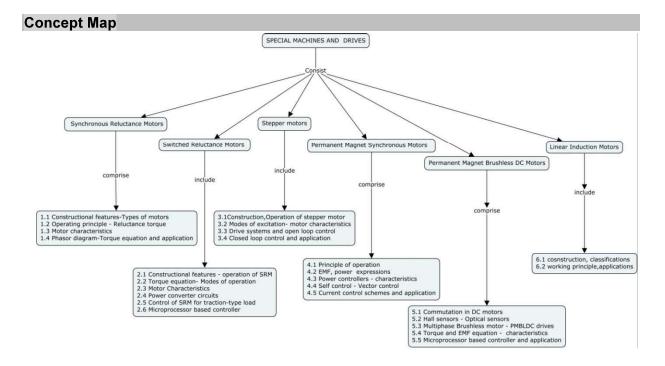
- 1. Design an open loop controller for a four phase VR stepper motor.
- 2. Explain the closed loop speed control system for a SRM drive.
- 3. Illustrate a low cost three phase BLDC motor drive.

Course Outcome 4 (CO4)

1. Select the suitable special purpose motor drive for the following applications:

- (a) PC based scanning equipment (b) Traction (c) Fan and also justify your choice.
- 2. Find a suitable special purpose motor drive system for optical disk drive head driving mechanism. Illustrate the schematic of the motor drive.
- 3. Illustrate the closed loop drive system suitable for industrial process control where variable speed, precise motion control and stable operation are critical.

Course Outcome 5 (CO5)


- 1. Explain the role of microprocessor in the design of closed loop variable reluctance stepper motor drive.
- 2. Discuss the implementation of vector control in PMSM using DSP.
- 3. Illustrate the microprocessor based BLDC motor drive.

Course Outcome 6 (CO6)

- 1. Model and Analyse a closed loop speed controlled SRM drive for the following cases:

 (a) Increase the reference speed (b) Increase the load torque. Use Matlab-Simulink.
- 2. Develop a Matlab-Simulink model for analysing the current and torque waveforms of a variable speed BLDC motor drive.

Design a self controlled PMSM using Matlab-Simulink.

Syllabus

Synchronous Reluctance Motors

Constructional features-Types-Cage rotor-Cageless rotor-Axial and Radial air gap Motors - Operating principle - Reluctance torque- Motor characteristics-Torque-angle characteristics-Speed-torque characteristics - Phasor diagram-Torque equation-Applications.

Switched Reluctance Motors

Constructional features - Principle of operation and control requirements- Torque equation - Modes of operation - Motor Characteristics - Current-Flux linkage Characteristics-Torque-Speed Characteristics-Power converter circuits - Control of SRM for traction-type load-Microprocessor based controller- Applications.

Stepper motors

Constructional features - Principle of operation - Torque production in Variable Reluctance (VR) stepper motor - Modes of excitation - Dynamic characteristics - Drive systems and Circuit for open loop control of stepper motor - Closed loop control of stepper motor - Applications.

Permanent Magnet Synchronous Motors

Principle of operation - EMF, power input and torque expressions - Phasor diagram - Power controllers - Torque speed characteristics - Self control - Vector control - Current control schemes- Applications.

Permanent Magnet Brushless DC Motors

Commutation in DC motors - Difference between mechanical and electronic commutators - Hall sensors - Optical sensors - Multiphase Brushless motor - Square wave permanent magnet brushless motor drives - Torque and EMF equation - Torque-speed characteristics - Microprocessor based controller- Applications.

Linear Induction Motors

Construction-Classifications-Working Principle-Applications.

Learning Resources

- 1. Bimal K.Bose, "Modern Power Electronics and AC Drives", Prentice Hall, New Delhi, 2005.
- 2. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House Pvt. Ltd., New Delhi, Second edition, 2015.
- 3. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, Prentice Hall of India, 2009.
- 4. T.J.E.Miller ,"Brushless Permanent Magnet and Reluctance DC Motor Drives", Clarendon Oxford Press, 1989.
- 5. T. Kenjo, "Stepping Motors and their Microprocessor Controls", Clarendon Oxford Press, 1994.
- 6. T. Kenjo and S. Naganori, "Permanent Magnet and Brushless DC motors", Clarendon Oxford Press, 1989.
- 7. T. Kenjo, "Power Electronics for the Microprocessor Age", Oxford Press Publications, 1994.
- 8. J R Hendershot and T.J.E.Miller, "Design of Brushless Permanent Magnet Motors", Oxford University Press,1995.
- 9. K.Venkataratnam, "Special Electrical Machines", University Press(India) Pvt. Ltd., 2009.
- 10. I.Boldea and S.A.Nasar, "Linear motion electromagnetic systems", Wiley Interscience, 1985.
- 11. Ion Boldea, "Linear Electric Machines, Drives and MAGLEVs Handbook", CRC Press, Taylor& Francis Group, 2013.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	Торіс	Lectures	Outcome
1.	Synchronous Reluctance Motors		
1.1	Constructional features-Types-Cage rotor-	1	CO1
	Cageless rotor-Axial and Radial air gap Motors		
1.2	Operating principle – Reluctance torque	1	CO1
1.3	Motor characteristics-Torque-angle	2	CO2
	characteristics- Speed-Torque characteristics		
1.4	Phasor diagram-Torque equation- Applications	2	CO2

Module	Tonio	No. of	Course
No.	Topic	Lectures	Outcome
	Switched Reluctance Motors		
2.			
2.1	Constructional features – Principle of operation	2	CO1
	and control requirements		
2.2	Torque equation- Modes of operation	2	CO2
2.3	Motor Characteristics –Current-Flux linkage	2	CO2
	Characteristics-Torque-speed Characteristics		
2.4	Power converter circuits	1	CO3
2.5	Control of SRM for traction-type load	1	CO3
2.6	Microprocessor based controller- Applications	1	CO5
3.	Stepper motors		
3.1	Constructional features – Principle of operation –	2	CO1
	Torque production in Variable Reluctance (VR)		
	stepper motor		
3.2	Modes of excitation- Dynamic characteristics	1	CO2
3.3	Drive systems and Circuit for open loop control of	2	CO3
	stepper motor		
3.4	Closed loop control of stepper motor- Applications	1	CO3
4	Permanent Magnet Synchronous Motors		
4.1	Principle of operation	1	CO1
4.2	EMF, power input and torque expressions –	2	CO2
	Phasor diagram		
4.3	Power controllers – Torque speed characteristics	1	CO2
4.4	Self control – Vector control	2	CO3
4.5	Current control schemes- Applications	1	CO3
5	Permanent Magnet Brushless DC Motors		
5.1	Commutation in DC motors – Difference between	1	CO1
5.1	mechanical and electronic commutators	'	001
5.2	Hall sensors – Optical sensors	2	CO1
5.3	Multiphase Brushless motor – Square wave	1	CO2
0.3	permanent magnet brushless motor drives	ı	002
5.4		2	CO2
9. 4	Torque and EMF equation – Torque-speed characteristics	۷	002
5.5	Microprocessor based controller- Applications	1	CO5
6	Linear Induction Motors	<u> </u>	005
		1	CO1
6.1	Construction-Classifications		CO1
6.2	Working Principle- Applications.	2	CO1
	Total	38	

Course Designers:

Dr.L.Jessi Sahaya Shanthi Ijseee@tce.edu
 Dr.S.Arockia Edwin Xavier saexeee@tce.edu

18EERA0 POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	Category	L	Τ	Р	Credit	
18EERAU	RENEWABLE ENERGY SYSTEMS	PE	3	0	0	3

Preamble

This course will cover the applications of power electronics for the control and conversion of electrical power with emphasis on renewable energy systems.

Prerequisite

18EE530: Power Electronics

Course Outcomes

On the successful completion of the course, students will be able to

Course Outcome No.	Course Outcomes	Weightage*** in %
CO1	Explain contribution and impact of renewable energy sources	20
CO2	Describe the features of power electronics and their role in renewable energy system	30
CO3	Design converters for renewable energy systems	20
CO4	Categorize various issues experienced during grid connection of wind generators	10
CO5	Categorize various issues experienced during grid connection of PV systems	10
CO6	Demonstrate the control aspects of converters used in wind generators and PV systems	10

^{***} Weightage depends on Bloom's Level, number of contact hours

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learnin	g Domain Lev	/el	CDIO Curricular Components
#	Proficien	Cognitive	Affective	Psycho	(X.Y.Z)
	cy Scale			motor	
CO1	TPS2	Understand	Respond	-	1.3,2.1.1, 4.1.1, 4.1.2
CO2	TPS2	Understand	Respond	-	1.3,2.1.1, 2.3.1, 4.1.1, 4.1.2
CO3	TPS3	Apply	Value	_	1.3,2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1,
					4.3.2
CO4	TPS4	Analyze	Organise	_	1.3,2.1.5, 2.3.2, 2.3.3, 4.1.1, 4.1.2,
					4.3.3, 4.3.4
CO5	TPS4	Analyze	Organise	_	1.3,2.1.5, 2.3.2, 2.3.3, 4.1.1, 4.1.2,
					4.3.3, 4.3.4
CO6	TPS3	Apply	Value	_	1.3,2.1.1, 2.3.1, 2.3.2, 4.1.2, 4.3.1,
					4.3.2

Mapping with Programme Outcomes

CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	М	L						М		М			М	М
CO 2	М	L						М		М			М	М

C0	S	М	L			М	М		М	М
3										
CO 4	S	M	М			М	M		М	M
CO 5	S	М	М			М	М		М	М
CO 6	S	М	J			Μ	М		М	М

S- Strong; M-Medium; L-Low

Assessment Pattern

Bloom's Category	Continu	ous Asse Tests	essment	t Assignment			Terminal Examination
	1	2	3	1	2	3	
Remember	40	10	10	-	-	-	10
Understand	40	40	40	-	-	-	40
Apply	20	30	30	100	50	50	30
Analyze	-	20	20	-	50	50	20
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-

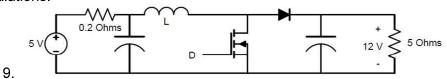
Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	-
Set	-
Guided Response	-
Mechanism	-
Complex Overt Responses	-
Adaptation	-
Origination	-

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. What is global warming?
 - 2. List the various types of renewable energy sources.
 - 3. Write the merits of renewable energy sources.


Course Outcome 2 (CO2):

- 1. What is the need for power converters in wind energy system?
 - 2. Discuss the role of power electronics in renewable energy system.

3. Explain the merits and demerits of power electronics.

Course Outcome 3 (CO3)

- 1. Develop the design procedure of soft switching AC-link universal power converter,
- 2. Figure 3.1 shows a boost (up) converter supplying 12 V to a load of 5 Ω from a 5 V source having an internal resistance of 0.2 Ω . Determine the duty ratio D at which the converter operates. (You may neglect semiconductor device drops in your calculations.

10. Figure 3.1 Boost converter

3. Compare hard and soft switching converters.

Course Outcome 4 (CO4)

1. Figure 4.1 shows a circuit model for the utility supplying one phase of an ac induction motor. The motor system parameters are Rs = 0.08 Ω , Lls = 1 mH, Lm = 40 mH, Llr = 1 mH, Rr = 0.1 Ω , and Rx = 33 Ω . If the utility voltage is 170 cos(377t), i) what is the current into the motor? and ii) At what power factor is the motor operating?

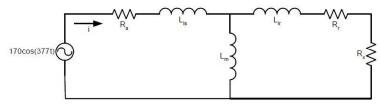


Figure 4.1 A Circuit model for one phase of an induction motor being driven by the utility

- 2. Consider a induction machine based wind energy conversion system. If induction machine is replaced by synchronous machine, what are the expected changes in the performance indices?
- 3. Consider synchronous machine based wind energy conversion system. If it is replaced by induction machine, analyse change in reactive power scenario.

Course Outcome 5 (CO5)

- 1. Which converter is best suitable for interfacing the PV array? Why?
- 2. Identify the issues related to grid connection of PV system.
- 3. Compare the issues related to grid connected mode and islanding mode operation of solar power system.
- 4. Compare the performance of various DC-DC converter topologies used in solar power conversion system.

Course Outcome 6 (CO6)

- 1. Demonstrate the role of pq theory in converter control.
- 2. Consider the circuit given in Figure 6.1. $V_d = 250V$, Switching frequency is 30 kHz. The bridge is connected to a speed controlled dc machine. The armature inductance $L_a = 0.2$ mH. The armature resistance is negligible.

- a) The bridge may be controlled by the use of unipolar or bipolar PWM. Describe the advantages and disadvantages of these control algorithms.
- b) The bridge is controlled to provide an average output voltage, V_o=200V. Find the duty ration D₁ and D₂ and the ripple frequency of the two control principles Sketch V_o(t) for the two control principles.
 - At the given speed, the back –emf E_a=200V. Unipolar PWM is used.
 - c) The armature current, I_a , is 1A, find the maximum and the minimum instantaneous armature current.
 - d) Sketch the armature current, i_a(t).Inductance which of the power semiconductors are conducting, Also sketch i_d(t).

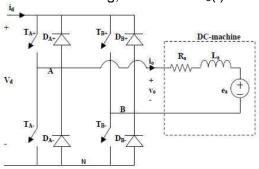
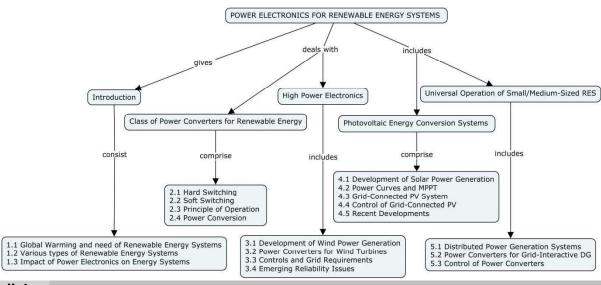



Figure 6.1

Concept Map

Syllabus

Introduction

Environmental Pollution: Global Warming Problem, Impact of Power Electronics on Energy Systems, Challenges of the Current Energy Scenario: The Power Electronics Contribution, Renewable Energy Systems

Class of Power Converters for Renewable Energy

Introduction, Hard Switching AC-Link Universal Power Converter, Soft Switching AC-Link Universal Power Converter, Principle of Operation of the Soft Switching AC-Link Universal Power Converter

Wind Energy Conversion Systems

Introduction, Development of Wind Power Generation, Power Converters for Wind Turbines, Controls and Grid Requirements for Modern Wind Turbines, Emerging Reliability Issues for Grid Connected Wind Power System

Photovoltaic Energy Conversion Systems

Introduction, Power Curves and Maximum Power Point of PV Systems, Grid-Connected PV System Configurations, Control of Grid-Connected PV Systems – Converters for domestic applications

Hybrid Renewable Energy System

Converters for hybrid renewable energy system - Recent Developments in Multilevel converters

Learning Resources

- 1. Haitham Abu-Rub, Mariusz Malinowski & Hamal Al Haddad, "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", IEEE Press and John Wiley Publications, First Edition, 2014.
- 2. Muhammad H.Rashid, "Power Electronics Circuits, Devices & Applications", Pearson Education India Publication, New Delhi, 7th Impression, 2009.
- 3. Ned Mohan, Tore Undeland & William Robbins, "Power Electronics: converters Applications and Design", John Willey and sons, 3rd Edition, 2003.
- 4. Ali Keyhani, M.N.Marwali & Min Dai, "Integration of green and renewable energy in electrical power systems", Wiley and sons, 2010.
- 5. Ewald F. Fuchs & Mohammad A.S. Masoum, "Power Conversion of Renewable Energy Systems" Springer New York Dordrecht Heidelberg London, 2011.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	Торіс	Lectures	Outcome
1.	Introduction		
1.1	Global Warming and need of Renewable Energy	1	CO1
	Systems		
1.2	Various types of Renewable Energy Systems	2	CO1
1.3	Impact of Power Electronics on Energy Systems	1	CO2
2.	Class of Power Converters for Renewable		
	Energy		
2.1	Hard Switching AC-Link Universal Power	2	CO2
	Converter		
2.2	Soft Switching AC-Link Universal Power Converter	1	CO2
2.3	Principle of Operation of the Soft Switching AC-	2	CO2
	Link Universal Power Converter		

Module	Taula	No. of	Course
No.	Topic	Lectures	Outcome
2.3.1	Design Procedure and Analysis	2	CO3
2.4	AC-AC,DC-AC and AC-DC Power Conversion	2	CO3
3.	Wind Energy Conversion Systems		
3.1	Development of Wind Power Generation	2	CO1
3.2	Wind Generator Technologies	1	CO2
3.3	Power Converters for Wind Turbines	2	CO2
3.4	Controls and Grid Requirements for Modern Wind Turbines	2	CO6
3.5	Emerging Reliability Issues for Grid Connected Wind Power System	2	CO4
4.	Photovoltaic Energy Conversion Systems		
4.1	Development of Solar Power Generation	1	CO1
4.2	Power Curves and Maximum Power Point of PV Systems	2	CO3
4.3	Grid-Connected PV System Configurations	2	CO5
4.4	Control of Grid-Connected PV Systems	2	CO6
4.5	Recent Developments in PV Systems	1	CO5
4.6	Converters for domestic applications	1	CO3
5.	Hybrid Renewable Energy System		
5.1	Converters for hybrid renewable energy system	2	CO2
5.2	Recent Developments in Multilevel converters	2	CO3
	Total	35	

Course Designers:

1. Dr. V. Suresh Kumar

vskeee@tce.edu

2. Dr. G.Sivasankar

gsivasankar@tce.edu

18EERB0 SIMULATION OF POWER ELECTRONIC SYSTEMS (TCP)	Category	L	Т	Р	Credit	
18EERBU	ELECTRONIC SYSTEMS (TCP)	PE	2	0	2	3

^{*}Maximum strength of students per class is 40.

Preamble

This Course enhances the students to analyze on various aspects of Power Electronic systems. The simulation of fundamental Power electronic circuits using Matlab-PLECS and PSPICE software is discussed. Using various simulation techniques, the output response of the systems for different conditions can be easily analyzed. The real power, reactive power, power factor & efficiency calculations are simplified using the simulation software. The Static, dynamic models and performance analysis of power electronics rectifier, inverter, chopper circuits and AC and DC motor drives are discussed.

Prerequisite

• 18EE530: Power Electronics

Course Outcomes

On the successful completion of the course, students will be able to

Course Outcome No.f	Course Outcomes	Weightage
CO1	Explain the concept of Matlab, PLECS and PSPICE simulation	20
CO2	Analyse the Linear, Nonlinear, Sinusoidal, Nonsinusoidal circuits, Diode rectifiers, Phase Controlled Rectifiers using Matlab, PLECS and PSPICE simulation	20
CO3	Analyse the DC-DC converters using Matlab, PLECS and PSPICE simulation	20
CO4	Analyse the DC-AC converters using Matlab, PLECS and PSPICE simulation	20
CO5	Analyse the State space models using Matlab, PLECS and PSPICE simulation	10
CO6	Analyse the DC and AC motor drives using Matlab, PLECS and PSPICE simulation.	10

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learning Dor	main Level	CDIO Curricular Components	
#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3

CO2	TPS4	Analyse	Organise	Complex Overt Responses	1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO3	TPS4	Analyse	Organise	Complex Overt Responses	1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO4	TPS4	Analyse	Organise	Complex Overt Responses	1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO5	TPS4	Analyse	Organise	Complex Overt Responses	1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3
CO6	TPS4	Analyse	Organise	Complex Overt Responses	1.3, 2.1.1, 2.1.4, 2.1.5, 2.3.1, 2.4.4, 3.2.3

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	Р	PO	РО	РО	PO	PO	РО	РО	PO	PO1	PO1	PO1		
	0	2	3	4	5	6	7	8	9	0	1	2	PSO	PSO
	1												1	2
CO1		L	L		S			М		M		L		S
	S													
CO2	S	S	S	М	S			М	L	М		L		S
CO3	S	S	S	М	S			М	L	М		L		S
CO4	S	S	S	М	S			М	L	М		L		S
CO5	S	S	S	М	S			М	L	М		L		S
CO6	S	S	S	М	S			М	L	М		L		S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive	Contin	uous Asse	ssment Tests	Practical	
Levels	1	2	3	Test#	Terminal Examination
Remember	10	-	-	-	-
Understand	30	40	40	-	40
Apply	60	60	60	40	60
Analyse	-	-	-	60	-
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

[#] Practical test using Matlab-PLECS & PSPICE.

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1):

- 1. Write any four general commands in Matlab.
- 2. Compare PLECS stand alone and PLECS block set.
- 3. What are the platforms for PSpice?

- 4. Explain the MATLAB While Structures.
- 5. Discuss the different types of analysis in PSpice.

Course Outcome 2 (CO2):

- 1. Draw a linear circuit with a nonsinusoidal source.
- 2. A 250V, 100W rated light bulb is connected to a 230V, 50Hz single phase supply. Plot the bulb voltage and current using PSpice.
- 11. A linear circuit supplied by a nonsinusoidal source is shown in Fig.1.

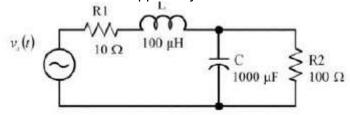


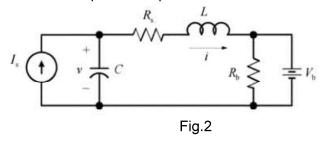
Fig. 1

- 12. Find the average power absorbed by the circuit if the source voltage is expressed as $v_s(t)=100+50\cos(120\pi t)+25\cos(240\pi t)+15\cos(360\pi t)$. Write Matlab Script file.
 - 5. Using PSpice simulate a three phase diode rectifier with source inductance. For RLE load plot the load voltage and current. The rectifier is supplied from a balanced three phase star connected 440V, 50Hz supply and the filter capacitance $C_f=1\mu F,R=10\Omega,L=5mH,E=2V$ and Source inductance is 0.5mH. Using transient analysis determine the fourier coefficients of the load current and input current under the following cases: (a) with out source inductance (b) with source inductance Ls=0.5mH (c) with source inductance Ls=1.5mH. Analyse the effect of source inductance.

Course Outcome 3 (CO3):

- 1. A buck converter has an inductance of $30\mu H$, a load resistance of 5Ω and a source voltage of 24V DC and operates with a duty ratio 0.6. Plot the output voltage if the PWM switching frequency is 10kHz. Analyse the output voltage and current for RL load under continuous current mode and discontinuous current mode using PSpice and Matlab-PLECS.
- 2. Simulate a Voltage commutated Chopper that delivers power to RLE load for which R=1 Ω and L=10mH.For a chopping frequency of 200Hz and dc source voltage of 400V, analyse the voltage, current output waveforms with respect to ripple.Plot the waveforms for the duty cycles 0.2 & 0.8.Use Matlab-PLECS.
- 3. Simulate the above circuit specified in question 2 using PSPICE software.

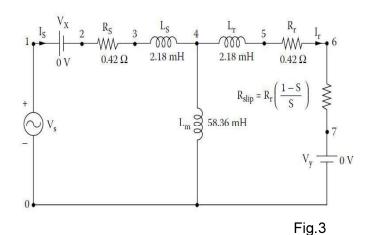
Course Outcome 4 (CO4):


- 1.Explain the simulation of the single phase PWM inverter using PSpice and Matlab-PLECS.
- 2.Simulate a single phase bridge inverter that feeds power to a load of R=10 Ω and L=0.04H from a 400V dc source. Analyse the power delivered for square wave

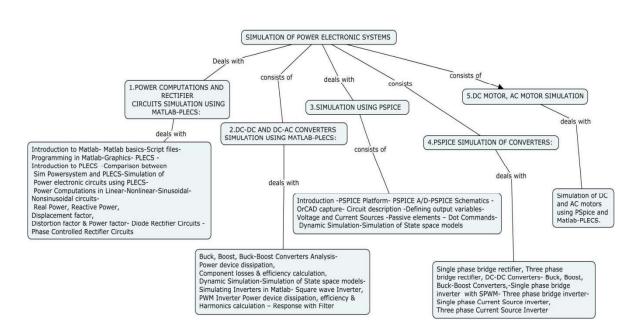
operation and quasi-square wave operation with 60% on-period. Compare the voltage, current and power delivered for the inverter operating frequencies 50Hz & 1kHz.Use Matlab-PLECS.

- 3. Simulate and analyse the above circuit specified in question 2 using PSPICE software.
- 4.Simulate a 3-phase 120 degree mode bridge inverter that feeds a star-connected load of R= 5Ω with dc source voltage=230V & f=50Hz.Compare the output voltage and current waveforms for square wave inverter operation and sine PWM operation. Use Matlab-PLECS and PSPICE.

Course Outcome 5 (CO5)


1. Develop a state space model for the following circuit shown in Fig.2

- 2.For the circuit shown in Fig.2, C=10 μ f, L=5mH, Is=10A and Rb=100 Ω with proper time interval, simulate and plot the capacitor voltage.
- 3. Find out the state space model equation for the buck boost converter.
- 4.Simulate a boost converter with the circuit parameter Vs=12V, Vo=28V, R=8Ω, L=150μH, C=100μF and f=5kHz using PSpice and Matlab-PLECS.


Course Outcome 6 (CO6)

- 1. Determine the transient response of a separately excited DC motor fed from a buck converter with respect to step change in load torque. Using PSpice and Matlab-PLECS plot the following:
 - (a)Armature current (b)Motor Speed (c)Developed motor torque.
- 2. Determine the PSpice schematic of the induction motor represented by its equivalent circuit as shown in Fig.3 and analyse the torque-speed characteristics for various slip values and various rotor resistance values.

3. Analyse the torque-speed characteristics of the induction motor represented by its equivalent circuit as shown in Fig.3 for various slip values and various rotor resistance values using Matlab-PLECS.

Concept Map

Syllabus

POWER COMPUTATIONS AND RECTIFIER CIRCUITS SIMULATION USING MATLAB-PLECS:

Introduction to Matlab-Matlab basics-Script files-Programming in Matlab-Graphics.

PLECS -Introduction to PLECS -Comparison between Sim Power system and PLECS-Simulation of Power electronic circuits using PLECS- Power Computations in Linear-Nonlinear-Sinusoidal- Non sinusoidal circuits- Real Power, Reactive Power, Displacement factor, Distortion factor & Power factor- Diode Rectifier Circuits -Phase ControlledRectifierCircuits.

SIMULATION OF DC-DC AND DC-AC CONVERTERS USING MATLAB-PLECS: Buck, Boost, Buck-Boost Converters Analysis- Power device dissipation, Component losses & efficiency calculation, Dynamic Simulation-Simulation of State space models-Simulating Inverters in Matlab- Square wave Inverter, PWM Inverter Power device dissipation, efficiency & Harmonics calculation – Response with Filter

SIMULATION USING PSPICE: Introduction -PSPICE Platform- PSPICE A/D-PSPICE Schematics -OrCAD capture- Circuit description -Defining output variables-Voltage and Current Sources -Passive elements — Dot Commands- Dynamic Simulation-Simulation of State space models.

SIMULATION OF CONVERTERS USING PSPICE: Single phase bridge rectifier, Three phase bridge rectifier,

DC-DC Converters- Buck, Boost, Buck-Boost Converters,-Single phase bridge inverter with SPWM- Three phase bridge inverter- Single phase Current Source inverter, Three phase Current Source Inverter.

SIMULATION OF DC MOTOR, AC MOTOR DRIVES : Simulation of DC and AC motor drives using PSpice and Matlab-PLECS.

Learning Resources

- 1. Muhammad H. Rashid and Hasan M. Rashid., "SPICE for Power Electronics and Electric Power" CRC Press 2006.
- 2. Randall Shaffer., "Fundamentals of Power Electronics with MATLAB" Charles River Media Boston Massachusetts, 2007.
- 3. Rao V.Dukkipati,."Analysis and Design of Control Systems using MATLAB" New age international, 2006.
- 4. Chee-Mun Ong, "Dynamic Simulation of Electric Machinery: Using MATLAB/ Simulink", Prentice Hall PTR, New Jersey, 1998.
- 5. Ned Mohan, "Power Electronics: Computer Simulation Analysis and Education using PSPICE", Minnesota Power Electronics Research and Education, USA, 1992.
- 6. Ramshaw E., Schuuram D. C., "PSpice Simulation of Power Electronics Circuits An Introductory Guide", Springer, New York, 1996.
- 7. http://www.plexim.com/plecs.

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.	·	Lectures	Outcome
1.	POWER COMPUTATIONS AND RECTIFIER SIMULATION USING MATLAB-PLECS	CIRCUITS	
1.1	Introduction to Matlab- Matlab basics-Script files- Programming in Matlab-Graphics	1	CO1
1.2	PLECS -Introduction to PLECS –Comparison between Sim Power system and PLECS	1	CO1
1.3	Simulation of Power Electronics circuits using PLECS- Power Computations in Linear-Nonlinear-Sinusoidal- Nonsinusoidal circuits	1	CO2
1.4	Real Power, Reactive Power, Displacement factor, Distortion factor & Power factor- Diode Rectifier Circuits - Phase Controlled Rectifier Circuits	CO2	
2.	DC-DC AND DC-AC CONVERTERS SIMULATION USING MATLAB-PLECS		
2.1	Buck, Boost, Buck-Boost Converters Analysis, Power device dissipation, Component losses & efficiency calculation	1	CO3
2.2	Dynamic Simulation-Simulation of State space models	1	CO5
2.3	Simulating Inverters in Matlab-PLECS- Square wave Inverter, PWM Inverter	1	CO4
2.4	Power device dissipation, Efficiency & Harmonics calculation – Response with Filter	CO3	
3	SIMULATION USING PSPICE		
3.1	Introduction -PSPICE Platform- PSPICE A/D-PSPICE Schematics -OrCAD capture	1	CO1

Module	Topic	No. of	Course
No.	·	Lectures	Outcome
3.2	Circuit description -Defining output variables	1	CO1
3.3	Voltage and Current Sources -Passive elements	2	CO1
3.4	Dot Commands	1	CO:
3.5	Dynamic Simulation-Simulation of State space models.	1	CO5
4	PSPICE SIMULATION OF CONVERTERS		
4.1	Single phase bridge rectifier, Three phase bridge rectifier,	1	CO2
4.2	DC-DC Converters- Buck, Boost, Buck-Boost Converters,	1	CO3
4.3	Single phase bridge inverter with SPWM-	1	CO4
4.4	Three phase bridge inverter- Single phase Current Source inverter Three phase Current Source Inverter.,	1	CO4
5	DC MOTOR, AC MOTOR DRIVES SIMULATION		
5.1	Simulation of DC and AC motor drives using PSpice and Matlab-PLECS	2	CO6
	Total	20	

Tentative List of Experiments (24 Hours)

Simulation using PSpice and Matlab-PLECS

- 1.Simulation of Diode Rectifier Circuits: Half wave, Full wave circuits with R, RL, RC loads &Battery charger applications.
- 2. Simulation of Phase Controlled Rectifier Circuits: Half wave phase controlled, Full wave phase controlled circuits with R, RL, RC loads &Battery charger applications.
- 3.Performance Analysis and Thermal Analysis of Single phase and Three phase Diode Rectifier Circuits, Phase Controlled Rectifier Circuits with filter –Analysis of Fourier coefficients of output voltage- Effects of Filter Capacitance.
- 4.Dynamic Simulation, Performance Analysis and Thermal Analysis :Simulation of State space models-Simulating Buck, Boost, Buck-Boost chopper circuits, Square wave Inverters-Single phase bridge inverter -Three phase bridge inverter- Single phase Current Source Inverter, Three phase Current Source Inverter, PWM Inverters with SPWM Power device dissipation, efficiency & Harmonics calculation Response with Filter.
- 5. Transient response analysis of DC motor and Induction motor drives.

Course Designers:

Dr.L.Jessi Sahaya Shanthi Ijseee@tce.edu
 Dr.S.Arockia Edwin Xavier saexeee@tce.edu

18EEEA0	INTERNET OF THINGS	Category	L	Т	Р	Credit
		ES	3	0	0	3

Preamble

The objectives of this course are to provide in-depth understanding of the underlying concepts of Internet of things, building blocks, domain-specific IoTs, and Design methodology for IOT. Also the course provides knowledge on Python coding to embed the coding in various open source hardware such as Arduino, Raspberry Pi. Eventually the course extends the students knowledge upto the level of building cost effective IOT system for real world scenario with the open source hardware and software tool chains.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to:

COs No.	Course outcomes	Weightage in %
CO1	Explain the architecture and functionality of IOT	15
CO2	Identify the design methodologies and sensor networks for the IOT implementation	20
CO3	Explain the logical design of IOT using python programming.	15
CO4	Develop the Python Program for the Raspberry Pi.	10
CO5	Choose the suitable hardware and software tools chains to fulfil the IOT requirements	15
CO6	Develop the IOT system for the given scenario	25

CO Mapping with CDIO Curriculum Framework

СО	TCE	Learr	ning Domain	Level	CDIO Curricular Components
#	Proficiency Scale	Cognitive	Affective	Psychomotor	(X.Y.Z)
CO1	TPS2	Understand	Respond		1.3, 2.3.1
CO2	TPS3	Apply	Value		1.3, 2.3.1
CO3	TPS2	Understand	Respond		1.3, 2.3.1
CO4	TPS3	Apply	Value		1.3, 2.3.1, 2.4.3, 2.4.6
CO5	TPS3	Apply	Value		1.3, 2.1.1, 2.1.5
CO6	TPS3	Apply	Value		1.3, 2.1.1, 2.3.1, 2.4.3, 2.4.4

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	L						М		М				М
CO2	S	М	L					М		М				S
CO3	М	L						М		М				М
CO4	S	М	L					М		М				S
CO5	S	М	L					М		М				S
CO6	S	М	L					М		М				S

S- Strong; M-Medium; L-Low

Assessment Pattern: Cognitive Domain

Cognitive Levels			nuous sment sts		Assignmer	Terminal Examination		
	1	2	3	1	2	3		
Remember	20	20	20	-	-	-	20	
Understand	40	40	30	-	-	-	30	
Apply	40	40	50	100	100	100	50	
Analyse	0	0	0	-	-	-	0	
Evaluate	0	0	0	-	-	-	0	
Create	0	0	0	-	-	-	0	

^{*}Assignment mark is based on IoT Miniproject

Assessment Pattern: Psychomotor

Psychomotor Skill	Miniproject /Assignment/Practical Component
Perception	
Set	
Guided Response	
Mechanism	
Complex Overt Responses	
Adaptation	
Origination	

Sample Questions for Course Outcome Assessment

Course Outcome 1 (CO1)

- 1. Mention important benefits of IOT
- 2. Identify the components for weather reporting with IOT.
- 3. Describe and compare the network architectures of OSI model and TCP/IP Model.

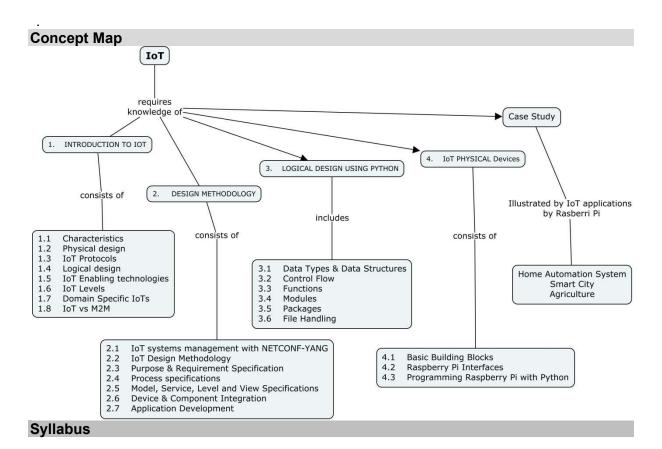
Course Outcome 2 (CO2)

- 1. What are the advantages of having a switch rather than a hub to interconnect several machines?
- 2. Describe how an algorithm is used in configuring a IOT network.
- 3. How does OSHW support for IOT

Course Outcome 3 (CO3)

- 1. Identify the components of IOT.
- 2. Compare the roles of switch and router.
- 3. Suggest the sensors for IOT for the given application

Course Outcome 4 (CO4)


- 1. Explain how route optimization is done in IOT.
- 2. Develop pseudo code for accessing sensors in python
- 3. Develop an ardiuno code for accessing sensors and actuators

Course Outcome 5 (CO5)

- 1. Compute the propagation delay of an IOT system when an algorithm is running with a defined rate and networking delay
- 2. Analyse the criticality, implementation issues and constraint of the IOT system for the given real world scenario.

Course Outcome 6 (CO6)

- 1. Consider a point to point link 50 Km. in length. At what bandwidth would propagation delay equal transmit delay for 100 bytes packet? What about 512 byte packets?
- 2. Develop an IOT System with sensors for monitoring agriculture field
- 3. Develop an IOT System with sensors for street light monitoring and control

INTRODUCTION TO IOT: Characteristics, Physical design, IoT Protocols, Logical design, IoT Enabling technologies, IoT Levels, Domain Specific IoTs, IoT vs M2M, Cyber security, IPv 4.

DESIGN METHODOLOGY: IoT systems management with NETCONF-YANG, IoT Design Methodology - Purpose & Requirement Specification, Process specifications, Model, Service, Level and View Specifications, Device & Component Integration, Application Development. Sensor networks-Wireless Sensor Networks (WSN)

LOGICAL DESIGN USING PYTHON: Data Types & Data Structures, Control Flow, Functions, Modules, Packages, File Handling,

IoT PHYSICAL Devices: Basic Building Blocks, Raspberry Pi Interfaces, Cloud Computing, Building IoT applications using Arduino and Raspberry Pi.

CASE STUDIES: Home Automation, Smart city, Agriculture

Learning Resources

 ArshdeepBahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015

- 2. Peter Waher "Learning Internet of Things", PacktPublishing,UK, 2015.
- 3. Miguel de Sousa", Internet of Things with Intel Galileo" ", PacktPublishing, UK, 2015
- 4. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014
- 5. Adrian McEwen, Hakim Cassimally "Designing the Internet of Things", WileyPublishing, 2015
- 6. https://nptel.ac.in/courses/106105166/
- 7. https://www.coursera.org/specializations/iot

Course Contents and Lecture Schedule

Module	Topic	No. of	Course
No.		Lecture	Outcome
_		Hours	
1.	INTRODUCTION TO IOT		004
1.1	Characteristics	1	CO1
1.2	Physical design IoT Protocols	<u>1</u> 1	CO1
1.4	Logical design	<u> </u>	CO1
1.5	loT Enabling technologies	1	CO1
1.6	loT Levels	1	CO1
1.7	Domain Specific IoTs	1	CO1
1.8	IoT vs M2M, Cyber security, IPv 4	1	CO1
2.	DESIGN METHODOLOGY		
2.1	IoT systems management with NETCONF-YANG	1	CO2
2.2	IoT Design Methodology	1	CO2
2.3	Purpose & Requirement Specification	1	CO2
2.4	Process specifications	1	CO2
2.5	Model, Service, Level and View Specifications	1	CO2
2.6	Device & Component Integration	1	CO2
2.7	Application Development	1	CO2
2.8	Sensor networks-Wireless Sensor Networks (WSN)	1	CO2
3.	LOGICAL DESIGN USING PYTHON		
3.1	Data Types & Data Structures	1	CO3
3.2	Control Flow	1	CO3
3.3	Functions, Modules	1	CO3
3.4	Packages	1	CO3
3.5	File Handling	1	CO3
4.	IoT PHYSICAL Devices		
4.1	Basic Building Blocks	1	CO5
4.2	Raspberry Pi Interfaces	2	CO5
4.3	Cloud Computing	1	
4.4	Building IoT applications using Arduino and Raspberry Pi.	3	CO4
5	CASE STUDIES		
5.1	Home Automation	2	CO6
5.2	Smart city	3	CO6

5.3	Agriculture	3	CO6
	Total	36	

CourseDesigners

Dr.P.S.Manoharan psmeee@tce.edu
 Dr.R.Helen rheee@tce.edu
 Dr.D.Kavitha dkavitha@tce.edu

THIAGARAJAR COLLEGE OF ENGINEERING: MADURAI 625 015 (An Autonomous Institution Affiliated to Anna University)

Minutes of the Sixty Fourth Meeting of Academic Council

The Sixty Fourth meeting of the Academic Council was held on 11 January 2023 Wednesday at 10 AM in Online Mode under the Chairmanship of Dr. M. Palaninatha Raja, Principal i/c. The following members were present

1.	ncipal i/c. The following mer Dr.D.K.Subramanian	Former Professor, Indian Institute of Science, Bengaluru		
2.	Dr.K.Palanivelu			
۷.	Dr.K.Palanivelu	Professor, Centre for Environmental Studies, Anna University, Chennai		
2	Dr. V. Malathy			
3.	Dr. K. Malathy	Professor, Department of ECE, Anna University, Chennai		
4.	Dr.P.Latha	Principal i/c, Government College of Engineering, Tirunelveli		
5.	Dr.Raviprakash Salagame	Board Member & Director for Global Industry Program, IUCEE		
6.	Mr. M.V. Ramana Murthy	Director & Head, R&D Operations, Ericsson R&D, Bengaluru		
7.	Dr.R.Velkennedy	Dean, Co-curricular and Extracurricular Activities		
8.	Dr.M.Kottaisamy	Dean, Students and Head, Dept. of Chemistry		
9.	Dr.K.Chockalingam	Registrar (Admin)		
10.	Dr.S.Baskar	Dean (Research and Development)		
11.	Dr.S.J. Thiruvengadam	Dean (Academic Process) and Member Secretary		
12.	Dr.S.Rajaram	Registrar (Academics) and Head, Dept, of ECE		
13.	Dr.K.Sudalaimani	Head, Dept. of Civil Engineering		
14.	Dr.G.K. Raajesh	Dean, Industry Institute Interface		
15.	Dr.A.Valan Arasu	Head, Dept. of Mechanical Engineering		
16.	Dr.C.K.Babulal	Head, Dept. of Electrical and Electronics Engineering		
17.	Dr.S.Mercy Shalinie	Dean (MIS) and Head, Dept. of CSE		
18.	Dr.P.Chitra	Head, Dept, of CSBS and Dept. of Computer Applications		
19.	Dr.C.Deisy	Head, Dept. of Information Technology		
20.	Dr.S.Jeyabharathi	Head, Dept. of Mathematics		
21.	Dr.G.Kanagaraj	Professor, Dept. of Mechatronics		
22.	Dr.M.Mahendran	Head, Dept. of Physics		
23.	Dr.S.Parthasarathy	Head, Dept. of AMCS		
24.	Dr. Jinu Louisidha Kitcheley	Head, Dept. of Architecture		
25.	Dr.S.Muthuramalingam	Controller of Examinations		
26.	Dr.T.Baskaran	Professor (CAS), Dept. of Civil Engineering		
27.	Dr.Pl.K.Palaniappan	Professor (CAS), Dept. of Computer Applications		
28.	Dr.B.Ashok Kumar	Assistant Professor, Department of EEE		
29.	Dr.V.R.Venkatasubramani	Assistant Professor, Dept. of Electronics & Commn. Engg		
30.	Dr.B.Subbulakshmi	Assistant Professor, Dept. of Computer Science and Engg.		
31.	Dr.S.Vijayalakshmi	Professor (CAS), Dept. of Computer Applications		
32.	Dr.A.Malini	Assistant Professor, Department of CSBS		
33.	Dr.I.Chandramathy	Assistant Professor, Dept. of Architecture		
34.	Dr.C.Jeyamala	Associate Professor, Department of Information Technology		
35.	Dr.D.Anitha	Assistant Professor (Selection Grade), Department of AMCS		
36.	Ms.S.Pudumalar	Assistant Professor, Department of Information Technology		

The following members had expressed their inability to attend the meeting due to their pre-occupation.

1.	Dr.N	Vedachalam	ISRO Distinguished Professor, ISRO, Trivandrum

The Agenda for the meeting:

- To consider the business brought forward by the Boards of Studies and by the Standing Committee of the Academic Council.
- To discuss any other matter pertaining to the academic activities of the college.
- **64.01** To confirm the minutes of the 63rd meeting of the Academic Council held on 25th June 2022.

Resolved to confirm the minutes of the 63rd meeting of the Academic Council held on 25th June 2022 as there were no comments on the minutes.

64.02 To review the action taken on the Minutes of the 63rd meeting of the Academic Council held on 25th June 2022.

The Chairman presented the actions taken on the suggestions made during the 63rd Meeting of the Academic Council. The Council resolved to ratify the actions taken as presented.

64.03 To consider the recommendations of the Board of Studies of Civil Engineering to introduce detailed syllabus for the second semester B.E.(Civil Engineering) Degree Programme as given in Annexure—A.

Resolved to approve the detailed syllabus for the second semester B.E.(Civil Engineering) Degree as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.04 To consider the recommendations of the Board of Studies of Civil Engineering to revise the syllabus for the courses 18CE660 Design of Reinforced Concrete Elements and 18CERNO Design of Steel Structures for B.E. (Civil Engineering) Degree Programme as given in Annexure–B.

Resolved to approve the revision of the syllabus for the courses as 18CE661 Design of Reinforced Concrete Elements and 18CERN1 Design of Steel Structures for B.E. (Civil Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64.05 To consider the recommendations of the Board of Studies of Civil Engineering to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Civil Engineering), M.E. (Structural Engineering), M.E. (Infrastructure Engineering and Management), M.E. (Environmental Engineering) and M.E. (Construction Engineering and Management) Degree Programmes as given in Annexure—C.

Resolved to approve the revision of the assessment pattern as per the revised norms of Anna University, for B.E. (Civil Engineering), M.E. (Structural Engineering), M.E. (Infrastructure Engineering and Management), M.E. (Environmental Engineering) and M.E. (Construction Engineering and Management) Degree Programmes as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64.06 To consider the recommendations of the Board of Studies of Mechanical Engineering to introduce detailed syllabus for B.E.(Mechanical Engineering) Degree Programme as given in Annexure–D.

Resolved to approve the detailed syllabus for B.E.(Mechanical Engineering) Degree Programme as presented in the Academic Council

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.07 To consider the recommendations of the Board of Studies of Mechanical Engineering to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Mechanical Engineering) Degree Programme as given in Annexure–E.

Resolved to approve the revision of the assessment pattern as per the revised norms of Anna University, for B.E. (Mechanical Engineering) Degree Programme as presented in the Academic Council

This comes into effect for the students admitted in the academic year 2021-22.

64.08 To consider the recommendations of the Board of Studies of Electrical and Electronics Engineering to introduce detailed syllabus for B.E. (Electrical and Electronics Engineering) Degree Programme as given in Annexure–F.

Resolved to approve the detailed syllabus for B.E(Electrical and Electronics Engineering) Degree Programme as presented in the Academic council

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.09 To consider the recommendations of the Board of Studies of Electrical and Electronics Engineering to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Electrical and Electronics Engineering) and M.E (Power Systems Engineering) Degree Programmes as given in Annexure—G.

Resolved to approve the assessment pattern as per the revised norms of Anna University, for B.E. (Electrical and Electronics Engineering) and M.E (Power Systems Engineering) Degree Programmes as presented in the Academic Council

This comes into effect for the students admitted from the academic year 2021-22 onwards

64.10 To consider the recommendations of the Board of Studies of Electronics and Communication Engineering to introduce detailed syllabus for B.E. (Electronics and Communication Engineering) Degree Programme as given in Annexure—H.

Resolved to approve the detailed syllabus for B.E. (Electronics and Communication Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.11 To consider the recommendations of the Board of Studies of Electronics and Communication Engineering to revise the syllabus for 18ECEB0 Fundamentals of Machine Learning for B.E. (Electronics and Communication Engineering) Degree Programme as given in Annexure–I.

Resolved to approve the revision of the syllabus as 18ECEB1 Fundamentals of Machine Learning for B.E. (Electronics and Communication Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2020-21 onwards.

64.12 To consider the recommendations of the Board of Studies of Electronics and Communication Engineering to introduce an elective course 21ECPR0 Satellite Remote Sensing for B.E. (Electronics and Communication Engineering) Degree Programme as given in Annexure–J.

Resolved to approve the syllabus for an elective course 21ECPR0 Satellite Remote Sensing for B.E. (Electronics and Communication Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64.13 To consider the recommendations of the Board of Studies of Electronics and Communication Engineering to introduce an elective course 21CNRC0 Energy Harvesting in Wireless Sensor Networks for M.E. (Communication Systems) Degree Programme as given in Annexure–K.

Resolved to approve the introduction of the elective course 21CNRC0 Energy Harvesting in Wireless Sensor Networks for M.E. (Communication Systems) as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64.14 To consider the recommendations of the Board of Studies of Electronics and Communication Engineering to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Electronics and Communication Engineering) and M.E. (Communication Systems) Degree Programmes as given in Annexure–L.

Resolved to approve the assessment pattern as per the revised norms of Anna University, for B.E. (Electronics and Communication Engineering) and M.E. (Communication Systems) Degree Programmes as presented in the Academic Council

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64.15 To consider the recommendations of the Board of Studies of Computer Science and Engineering to introduce detailed syllabus for B.E. (Computer Science and Engineering) Degree Programme as given in Annexure–M.

Resolved to approve the detailed syllabus for B.E. (Computer Science and Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.16 To consider the recommendations of the Board of Studies of Computer Science and Engineering to introduce industry supported course 18CS1N0 Software Security for B.E. (Computer Science and Engineering) Degree Programme as given in Annexure–N.

Resolved to approve the industry supported course 18CS1N0 Software Security for B.E. (Computer Science and Engineering) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2020-21 onwards.

64:17 To consider the recommendations of the Board of Studies of Computer Science and Engineering to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Computer Science and Engineering) and M.E. (Computer Science and Engineering) Degree Programmes as given in Annexure–O.

Resolved to approve the assessment pattern as per the revised norms of Anna University, for B.E. (Computer Science and Engineering) and M.E. (Computer Science and Engineering) Degree Programmes as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64:18 To consider the recommendations of the Board of Studies of Information Technology to introduce detailed syllabus for B.Tech.(Information Technology) Degree Programme as given in Annexure–P.

Resolved to approve the detailed syllabus for B.Tech.(Information Technology) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64:19 To consider the recommendations of the Board of Studies of Information Technology to revise the assessment pattern as per the revised norms of Anna University, for B.Tech.(Information Technology) as given in Annexure–Q.

Resolved to approve the revised assessment pattern as per the revised norms of Anna University, for B.Tech.(Information Technology) as presented in the Academic

Council.

This comes into effect for the students admitted in the academic year 2021-22.

64:20 To consider the recommendations of the Board of Studies of Mechatronics to introduce detailed syllabus for B.E.(Mechatronics) Degree Programme as given in Annexure–R.

Resolved to approve the detailed syllabus for B.E.(Mechatronics) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64.21 To consider the recommendations of the Board of Studies of Mechatronics to introduce elective courses for B.E. (Mechatronics) Degree Programme as given in Annexure–S.

Resolved to approve the elective courses for B.E. (Mechatronics) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2019-20 onwards.

64.22 To consider the recommendations of the Board of Studies of Mechatronics to revise the assessment pattern as per the revised norms of Anna University, for B.E. (Mechatronics) as given in Annexure—T.

Resolved to approve the revised assessment pattern as per the revised norms of Anna University, for B.E. (Mechatronics) as presented in the Academic Council.

This comes into effect for the students admitted in the academic year 2021-22.

64:23 To consider the recommendations of the Board of Studies of Computer Science and Business Systems to introduce a detailed Syllabus of Sixth Semester for B.Tech. (Computer Science and Business Systems) Degree Programme as given in Annexure – U.

Resolved to approve the detailed Syllabus of Sixth Semester for B.Tech. (Computer Science and Business Systems) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2020-21 onwards.

64:24 To consider the recommendations of the Board of Studies of Computer Science and Business Systems to introduce Elective courses for B.Tech. (Computer Science and Business Systems) Degree Programme as given in Annexure –V.

Resolved to approve the Elective courses for B.Tech. (Computer Science and Business Systems) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2020-21 onwards.

64:25 To consider the recommendations of the Board of Studies of Computer Science and Business Systems to introduce Industry Supported Course '20CB2A0 Application Security' for B.Tech. (Computer Science and Business Systems) Degree Programme as given in Annexure –W.

Resolved to approve the Industry Supported Course '20CB2A0 Application Security' for B.Tech. (Computer Science and Business Systems) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2020-21 onwards.

64:26 To consider the recommendations of the Board of Studies of Computer Science and Business Systems to revise the assessment pattern as per the revised norms of Anna University, for B.Tech. (Computer Science and Business Systems) as given in Annexure–X.

Resolved to approve the revised assessment pattern as per the revised norms of Anna University, for B.Tech. (Computer Science and Business Systems) as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64:27 To consider the recommendations of the Board of Studies of Computer Applications to revise the assessment pattern as per the revised norms of Anna University, for Master of Computer Applications Degree Programme as given in Annexure –Y.

Resolved to approve the revised assessment pattern as per the revised norms of Anna University, for Master of Computer Applications Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64:28 To consider the recommendations of the Board of Studies of Applied Mathematics and Computational Science to revise the assessment pattern as per the revised norms of Anna University, for M.Sc. (Data Science) Degree Programme as given in Annexure –Z.

Resolved to approve the revised assessment pattern as per the revised norms of Anna University, for M.Sc. (Data Science) Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64:29 To consider the recommendations of the Board of Studies of Architecture to introduce Revised Credit Distribution as per Council of Architecture, Courses of Study, detailed Syllabus for Second to Fourth Semester and M.Arch. Degree Programme as given in Annexure –AA.

Resolved to approve the Revised Credit Distribution as per Council of Architecture, Courses of Study, detailed Syllabus for Second to Fourth Semester and M.Arch. Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64:30 To consider the recommendations of the Board of Studies of Architecture to introduce Courses of Study, detailed Syllabus for Fifth to Tenth Semester for B.Arch. Degree Programme as given in Annexure –AB.

Resolved to approve the Courses of Study, detailed Syllabus for Fifth to Tenth Semester for B.Arch. Degree Programme as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64:31 To consider the recommendations of the Board of Studies of Science and Humanities to consider the syllabus for the elective courses 22MAFA0 Algorithmic Graph Theory, 22MAFB0 Fuzzy Sets and Systems, 22MAFD0 Numerical Calculus and 22MAFF0 Mathematics for Machine Learning for B.E./B.Tech., Degree Programmes as given in Annexure- AC.

Resolved to approve the syllabus for the elective courses 22MAFA0 Algorithmic Graph Theory, 22MAFB0 Fuzzy Sets and Systems, 22MAFD0 Numerical Calculus and 22MAFF0 Mathematics for Machine Learning for B.E./B.Tech., Degree Programmes as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2022-23 onwards.

64:32 To consider the recommendations of the Standing Committee to introduce the amendment in UG Regulations for the course on 'Research Practice' as given in Annexure – AD.

Resolved to approve the amendment in UG Regulations for the course on 'Research Practice' as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

64:33 To consider the recommendations of the Standing Committee to introduce the Honors in the same discipline, minor in other specialization and honors in other specialization for undergraduate degree Programmes as given in Annexure –AE.

Resolved to approve the Honors in the same discipline, minor in other specialization and honors in other specialization for undergraduate degree Programmes as presented in the Academic Council.

This comes into effect for the students admitted from the academic year 2021-22 onwards.

IV Any other matter

During the academic council meeting, the members had suggested the following points:

- Action plan shall be developed to improve collaborations to next level by visiting industries in order to increase the visibility of the institution by inviting industries.
- Institute shall establish "Research Clusters" that enable the students to work on industry problems.
- Setting up of Center of Excellence in "Quantum Computing", "Autonomous Computing" and other cutting-edge technologies shall be explored.
- Organizing one or two conferences per year and publishing the activities of TCE in online research bulletins shall improve the branding and networking of TCE
- Count of SCI publications and the number of citations is to be increased. Ways to convert PG projects to patents shall be explored.
- Progress on NEP implementation shall be highlighted
- Digital twins can be used in all departments. Self-adaptive and Self repairing systems shall be taught in the curriculum. Dr. D.K. Subramanian shall be invited for a talk in this regard.
- Large datasets shall be identified by the institution to use in courses like Machine Learning and Deep learning. IBM Watson Analytics shall be explored.
- Experts from Product Based Companies shall be invited to the Board of Studies of Computer Science and Engineering and Information Technology Departments.
- A mechanism for recommending appropriate elective courses to the students shall be made in place.

Prepared by:

Dr.S.J. Thiruvengadam, Dean (Academic Process)

Approved by:

Dr.M.Palaninatha Raja, Principal i/c

Assessment Pattern

BE EEE DEGREE PROGRAMME

FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2021-22

THIAGARAJAR COLLEGE OF ENGINEERING

(A Government Aided Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

Course Code	Course Name	Course designers			
21EE310	Numerical methods and Complex variables	Dr.R.Rammohan, Dr.B.Vellaikannan.			
Blooms	Continuous Assessment		Assignment		Terminal Examination
	1	Tests 2	1	2	
Remember	10	10			
Understand	20	20			30
Apply	70	70	100	100	70
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE320	DC machines and Transformers	Dr. V. Saravanan, Dr.R. Rajan	Prakash		
Blooms	Continuous Ass	essment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE330	Linear Integrated circuits	Dr. S. Arockia Edwin Xavier, Dr.	r.R.Helen, Dr.G.	Sivasankar.	
Blooms	Continuous A	Assessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100		40
Analyze				100	
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE340	Digital Systems	Dr.M.Saravanan, Dr.D.Kavitha, Dr.B.Ashok Kumar.			
Blooms	Con	tinuous Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	30	30			30
Understand	35	35	50	30	35
Apply	35	35	50	30	35
Analyze				40	
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE350	Signals and Systems	Dr.L.Jessi Sahaya Shanthi, Dr.R.Helen,			
Blooms	Continuous As	sessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers		
21EE360	C and C++ Programming (TCP)	Dr. P. Venkatesh, Dr. C.K. Bab	pulal, Dr. S. Charles Raja.	
Blooms	Continuous A	ssessment Tests	LAB	Terminal Examination
	1	2	1	
Remember	10	10		10
Understand	30*	30*		30
Apply	40	40	30	40
Analyze	20	20	40	20
Evaluate				
Create				

^{*20} Marks allotted for MCQ

Course Code	CourseName	Course designers			
21EE4R10	Probability and Random processes	Dr.V.Gnanaraj,Dr.R.Rammohan, Dr.B.Vellaikannan.			
Blooms	Continuous Asse	ssment Tests	Ass	signment	Terminal Examination
	1	2	1	2	
Remember	10	10			
Understand	20	20			30
Apply	70	70	100	100	70
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
	Numerical Methods, Probability and Complex Variables (LE)	Dr.R.Rammohan, Dr.S.Jeyabharathi - Dr.M.Sundar			
Blooms	Continuous Asse	essment Tests	Ass	signment	Terminal Examination
	1	2	1	2	
Remember	10	10			
Understand	20	20			30
Apply	70	70	100	100	70
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE420	AC Machines	Dr. S. Latha, Dr. V. Prakash, Dr.	R.Rajan Prakasl	1	
Blooms	Continuous As	sessment Tests	Assign	ıment	Terminal Examination
,	1	2	1	2	20
Remember	20	20			30
Understand	30	30			50
Apply	50	50	100	100	
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE430	Measurements & Instrumentation	Dr.M.Geethanjali,Dr.Prakash, D.Mr.M.Ramkumar	r.D.NelsonJayal	kumar,	
Blooms	Continuous A	Assessment Tests	Assign	ıment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE440	Control Systems	Prof.S.Sivakumar, Dr.S.Latha, Prof.M.Varatharajan			
Blooms	Continuous Ass	sessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers				
21EE490	Project Management	Prof. S.Sivakumar, Dr.D.Kavith	Prof. S.Sivakumar, Dr.D.Kavitha, Mr.S.Surendhar			
Blooms	Continuous A	ssessment Tests	Assign	nment	Terminal Examination	
	1	2	1	2		
Remember	20	20			20	
Understand	50	50			50	
Apply	30	30	100	100	30	
Analyze						
Evaluate						
Create						

Course Code	CourseName	Course designers			
21EE510	Generation, Transmission and Distribution	Prof. S.Sivakumar, Dr.N.Shanmuga Vadivoo, Dr.R.Rajan Prakash			
Blooms	Continuous Assess	sment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	60	40			40
Apply	20	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE520	Microcontrollers	Dr.M.Saravanan, Dr.P.S.Man	Dr.M.Saravanan, Dr.P.S.Manoharan, Dr.D.Kavitha		
Blooms	Continuo	us Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			30
Apply	40	40	100	100	50
Analyze					
Evaluate					
Create					

CourseCode	Course Name	Course designers			
21EE530	Power Electronics	Prof. V.Suresh Kumar, Dr. L.Jes Dr. S. Arockia Edwin Xavier	si Sahaya Shant	hi,	
Blooms	Continuous A	Assessment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	50	50	40
Analyze			50	50	
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE540	Accounting and Finance	Mr.B.Brucelee, Dr. R.Sivasankaran, Mr.S.Rajkumar			
Blooms	Continuous A	ssessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			20
Apply	50	50	100	100	60
Analyze					
Evaluate					
Create					

Course Code	CourseName	Course designers			
21EE610	Power System Analysis	Dr. P. Venkatesh, Dr. C.K. Babulal, Dr. S. Charles Raja			
Blooms	Continuous Asse	ssment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

CourseCode	CourseName	Course designers			
21EE620	Data Structures	Dr.S.Prasanna	1	l	
Blooms	Continuous A	ssessment Tests	Assign	nment	Terminal Examination
,	1	2	1	2	
Remember	20	20			10
Understand	20	20			30
Apply	60	60	100	100	60
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EE710	Electric Power Utilization	Dr. P.S.Manoharan, Dr.N. Shanmugavadivoo, Dr.D. Nelson Jayakumar			
Blooms	Continuous Asse	essment Tests	Assignm	ent	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPE0	Power system operation and Control	Dr.P.S.Manoharan Dr.D.Kavitha			
Blooms	Continuous Assess	ment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPF0	Electrical machine design	Latha.S Nelson Jayakumar D.			
Blooms	Continuous A	Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	20	20			20
Apply	60	60	100	100	60
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPG0	Switchgear and protection	Dr.K. Selvi,Dr.M.Geethanjali			
Blooms	Continuous A	Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50	50	50	50
Apply	30	30	50	50	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPT0	Wind and Solar technology	Dr.P.Venkatesh			
Blooms	Continuous	Assessment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERC0	Principles of energy conservation	Dr.V.Saravanan, Dr.D.Nelson Jayakumar			
Blooms	Continuous	s Assessment Tests	Assign	ıment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERD0	Operation and maintenance of electrical equipment	Dr.N.Shanmugavadivoo, Dr.D.Nelson Jayakumar			
Blooms	Continuous A	Assessment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	60	60			60
Apply	20	20	100	100	20
Analyze					
Evaluate					
Create					

ourse Code	Course Name	Course designers			
21EEPH0	VLSI Design	Dr.M.Saravanan Dr.R.Helen			
Blooms	Continuous A	Assessment Tests	Assignment		Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers		
21EEPJ0	FPGA based system design	n (TCP)Dr.R.Helen Dr.D.Kavitha		
Blooms	Continuous Assessment Tests		LAB	Terminal Examination
	1	2		
Remember	20	20		20
Understand	50	50	30	50
Apply	30	30	50	30
Analyze				
Evaluate				
Create				

Course Code	Course Name	Course designers			
21EEPN0	Embedded Systems Design (TCP)	Dr.M.Saravanan,DrP.S.Mar	Dr.M.Saravanan,DrP.S.Manoharan		
Blooms	Continuou	s Assessment Tests	Lab	Terminal Examination	
	1	2			
Remember	20	20		20	
Understand	40	40		40	
Apply	40	40	70	40	
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERF0	Industrial Instrumentation	Dr.B.Ashok Kumar			
Blooms	Continuous	Assessment Tests	Assignment		Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers		
21EEPK0	Digital Signal Processing (TCP)	Dr.L.JessiSahayaShanthi Dr.R.Helen		
Blooms	Continuous	S Assessment Tests	Lab	Terminal Examination
	1	2		
Remember	20	20		20
Understand	40	40		40
Apply	40	40	50	40
Analyze			20	
Evaluate				
Create				

ourse Code	Course Name	Course designers		
21EEPS0	Soft Computing(TCP)	Dr.S.Baskar Dr. P. Venkatesk Dr.C.K.Babulal	1	
Blooms	Continuo	Continuous Assessment Tests Lab		Terminal Examination
	1	2		
Remember	20	20		20
Understand	40	40		40
Apply	40	40	30	40
Analyze			40	
Evaluate				
Create				

(20+10) Guided Mechanism

Course Code	Course Name	Course designers			
21EEPU0		Prof. V.Suresh Kumar Dr. L.JessiSahayaShanthi Dr. S.Arockia Edwin			
Blooms	Continuous Assessment Tests		Assignment		Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	20	20			20
Apply	60	60			60
Analyze			100	100	
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPV0	FACTS and Custom Power Devices	Dr.V.Suresh Kumar Dr.G.Sivasankar			
Blooms	Cont	inuous Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	10			10
Understand	80	60			60
Apply		30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPY0	Power Quality	Dr.V.Suresh Kumar, Dr.G.Sivasankar			
Blooms	Continuous Assessment Tests		Assignment		Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERA0	Power Electronics for Renewable Energy Systems	Dr.V.Suresh Kumar, Dr.G.Sivasankar			
Blooms	Contin	uous Assessment Tests	As	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERN0	Electric Vehicles	Dr.Arockia Edwin Xavier			
Blooms	Contin	uous Assessment Tests	Assi	ignment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPC0	Design of Electrical Installations	Dr.V.Saravanan, Dr.P.S.Manoharan			
Blooms	Cont	inuous Assessment Tests	Assignm	ent	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERM0	High Voltage Engineering	Dr.R.Rajan Prakash			
Blooms	Conti	inuous Assessment Tests	Assi	gnment	Terminal Examination
	1	2	1	2	
Remember	10	10			10
Understand	60	60			60
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPD0	Smart Grid	Dr.N.Kamaraj Dr.V.Saravanan Dr.S.Charles Raja			
Blooms	Cont	inuous Assessment Tests	As	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	60	60			50
Apply	20	20	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPL0	Biomedical Instrumentation	Dr.R.Helen , Dr.B.Ashok kumar			
Blooms	Cont	inuous Assessment Tests	As	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			40
Apply	30	30	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPB0	Operation Research	Prof.S.Sivakumar, Dr,D.Kavitha			
Blooms	Contin	uous Assessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	10	10			10
Understand	30	30			30
Apply	60	60	100	100	60
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers		
21EEPM0	Real Time Operating System(TCP)	Dr.M.Saravanan,DrP.S.Manoharan		
Blooms	Con	tinuous Assessment Tests	Lab	Terminal Examination
	1	2		
Remember	20	20		20
Understand	30	30		30
Apply	50	50	70	50
Analyze				
Evaluate				
Create				

Guided mechanism – 30 marks.

Course Code	Course Name	Course designers			
21EERJ0	Quality Engineering	Dr.S.Charlesraja			
Blooms	Conti	nuous Assessment Tests	Ass	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EERK0	Reliability Engineering	Prof.S.Sivakumar			
Blooms	Contin	uous Assessment Tests	Ass	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	50			50
Apply	50	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPZ0	Special Machines & Drives	Dr.L.Jessi Sahaya Shanthi, Dr.S.Arockia Edwin Xavier			
Blooms		nuous Assessment Tests	Ass	ignment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEEA0	Internet of things	Dr.P.S.Manoharan, Dr.R.Helen, Dr.D.Kavitha			
Blooms	Contin	uous Assessment Tests	Assignment		Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers		
21EERB0	Simulation of Power Electronic Systems (TCP)	Dr.L.Jessi Sahaya Shanthi, Dr.S.Arockia Edwin Xavier		
Blooms		nuous Assessment Tests	Lab	Terminal Examination
	1	2		
Remember	10	10		40
Understand	30	30		60
Apply	60	60	40	
Analyze			60	
Evaluate				
Create				

Course Code	Course Name	Course designers			
21EEPP0	Robotics	Mr.M.Varatharajan Dr.D.Kavitha Mrs.R.Suganya			
Blooms	Con	tinuous Assessment Tests	I	Assignment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	20			30
Apply	40	60	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21EEPW0	HVDC Transmission	Dr. V. Suresh Kumar Dr. G. Sivasankar			
Blooms	Cont	inuous Assessment Tests	A	Assignment	Terminal Examination
	1	2	1	2	
Remember	20	10			10
Understand	80	60			60
Apply		30	100	100	30
Analyze					
Evaluate					
Create					

Assessment Pattern

ME PSE DEGREE PROGRAMME

FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2021-22

THIAGARAJAR COLLEGE OF ENGINEERING

(A Government Aided Autonomous Institution affiliated to Anna University)

MADURAI – 625 015, TAMILNADU

Phone: 0452 – 2482240, 41 Fax: 0452 2483427 Web: <u>www.tce.edu</u>

Course Code	Course Name	Course designers			
21PS110	Optimization & Applied Mathematics	Dr.C.S. Senthil Kumar, Mr. R.Sivakumar.			
Blooms	Continuous Asse	essment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	10				
Understand	20	30			30
Apply	70	70	100	100	70
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PS120	Power System Dynamics and Stability	Dr.C.K.Babulal, Dr. P. Venka	Dr.C.K.Babulal, Dr. P. Venkatesh.		
Blooms	Continuous As	ssessment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PS130	Design of Renewable Energy System	Dr. V. Saravanan, Dr. D. Nelso	on Jayakumar.		
Blooms	Continuous	Assessment Tests	Assig	gnment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			30
Apply	40	40	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPC0	Power Converters for Power System Applications	Dr.M.Saravanan, Dr.V.Sureshkumar, Dr. S. Arockia Edwin Xavier.			
Blooms	Continuous As	ssessment Tests	Assignm	ent	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	80	80	50
Analyze			20	20	
Evaluate					
Create					

Course Code	Course Name	Course designers		
21PS160	Analysis of modern power system (TCP)	Dr. P. Venkatesh, Dr.C.K.Babulal.		
Blooms	Continuous As	sessment Tests	Laboratory	Terminal Examination
	1	2	1	
Remember	20	20		20
Understand	40	40		40
Apply	40	40	50	40
Analyze			50	
Evaluate				
Create				

Course Code	Course Name	Course designers			
21PS210	Power System Security and control	Dr. P. Venkatesh, Dr. S. Charles Raja			
Blooms	Continuous Assess	sment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	50	100	50
Analyze			50		
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PG250	Research Methodology and IPR				
Blooms	Continuous Assess	ment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PS260	Power System protection	Dr. K. Selvi, Dr. M. Geethanjali	ı		
Blooms	Continuous Ass	essment Tests	Assig	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPA0	Systems Theory	Dr. S. Baskar, Prof. S. Sivakum	ar, Dr. S. Latha		
Blooms	Continuous Ass	sessment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	10			10
Understand	20	20			20
Apply	40	50	50	50	50
Analyze	20	20	50	50	20
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPB1	Smart Power Grid	Dr. N. Kamaraj, Dr. V. Saravanan, Dr. S. Charles Raja			
Blooms	Continuous 2	Assessment Tests	Assign	nment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
		Dr.M.Saravanan, Dr.V.Saravanan, Dr.V.Suresh Kumar			
Blooms	Continuous A	Assessment Tests	Ass	signment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	80	100	50
Analyze			20		
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPD0	Power System Voltage Stability	Dr. C. K. Babulal			
Blooms	Continuous A	Assessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	30	20			20
Understand	70	60			60
Apply		20	100	100	20
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPE0	Electrical Transients in Power system	Dr. R. Rajan Prakash, Dr. S. Charles Raja			
Blooms	Continuous As	sessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	30	20			20
Understand	50	40			40
Apply	20	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPF0	Design of Power Distribution systems	Dr. N. Kamaraj, Dr. N. ShanmugaVadivoo			
Blooms	Continuous Ass	essment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPG0	Distributed Generation Systems	Dr. N. ShanmugaVadivoo, Dr. D. Kavitha			
Blooms		ssessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

CourseCode	CourseName	Coursedesigners			
21PSPH0	Flexible AC Transmission Systems	Dr. S. Arockia Edwin Xavier			
Blooms	Continuous As	ssessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	40	40	100	100	40
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPJ0	Energy Conservation and Management	Dr. V. Saravanan, Dr. D. Nelson Jayakumar			
Blooms	Continuous As	ssessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	30			30
Apply	40	50			50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPK0	Power Quality	Dr. M. Saravanan, Dr. V. Suresh Kumar			
Blooms	Continuous Ass	sessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	40	40			40
Apply	20	20	50	50	20
Analyze	20	20	50	50	20
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPL0	Power Plant Instrumentation and Control	Dr. V. Saravanan, Dr. M. Geethanjali			
Blooms	Continuou	s Assessment Tests	Assigni	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPM0	Power System Reliability	Prof. S. Sivakumar			
Blooms	Continuous Ass	sessment Tests	Assigni	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPP0	HVDC Transmission	Dr. N. ShanmugaVadivoo, Dr. R. Rajan Prakash			
Blooms	Continuous Ass	sessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPQ0	Soft Computing Techniques	Dr. S. Baskar, Dr. C. K. Babulal, Dr. P. Venkatesh			
Blooms	Continuo	ous Assessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	10	10			10
Understand	40	40			40
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPR0	Substation Automation	Dr. K. Selvi, Dr. M. Geethanjali, Dr. G. Sivasankar, Dr. B. Ashok Kumar			
Blooms	Continuous A	Assessment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	50	50			50
Apply	30	30	100	100	30
Analyze					
Evaluate					
Create					

Course Code	Course Name	Course designers			
21PSPS0	Electric and Hybrid Vehicles	Dr. M. Saravanan, Dr. S. Arockia Edwin Xavier			
Blooms	Continuous Ass	essment Tests	Assign	ment	Terminal Examination
	1	2	1	2	
Remember	20	20			20
Understand	30	30			30
Apply	50	50	100	100	50
Analyze					
Evaluate					
Create					